摘要:25. 如图.平面直角坐标系中.四边形OABC为矩形.点A.B的坐标分别为.动点M.N分别从O.B同时出发.以每秒1个单位的速度运动.其中.点M沿OA向终点A运动.点N沿BC向终点C运动.过点N作NP⊥BC.交AC于P.连结MP.已知动点运动了x秒. (1)P点的坐标为( . ), (2)试求 ⊿MPA面积的最大值.并求此时x的值. (3)请你探索:当x为何值时.⊿MPA是一个等腰三角形? 你发现了几种情况?写出你的研究成果.
网址:http://m.1010jiajiao.com/timu3_id_455012[举报]
(本题满分10分)
如图,在平面直角坐标系中,直线AB:
分别与x轴、y轴交于点A、B,
.![]()
![]()
(1)求b的值.
(2)动点C从A点出发以2个单位/秒的速度沿x轴的正半轴运动,动点D从B点出发以1个单位/秒的速度沿y轴的正半轴运动.运动时间为t(t>0),过A作x轴的垂线交直线CD于点P,过P作y轴的垂线交直线AB于点F,设线段BF的长为d(d>0),求d与t的函数关系式.
(3)在(2)的条件下,以点A为圆心,2为半径作⊙A,过点C作不经过第三象限的直线l与⊙A相切,切点为Q, 直线l与y轴交于点E,作QH⊥AE于H,交x轴于点G,是否存在t值,使
,若存在,求出t值;若不存在,请说明理由.
(本题满分10分)
如图,在平面直角坐标系中,直线AB:
分别与x轴、y轴交于点A、B,
.
![]()
![]()
(1)求b的值.
(2)动点C从A点出发以2个单位/秒的速度沿x轴的正半轴运动,动点D从B点出发以1个单位/秒的速度沿y轴的正半轴运动.运动时间为t(t>0),过A作x轴的垂线交直线CD于点P,过P作y轴的垂线交直线AB于点F,设线段BF的长为d(d>0),求d与t的函数关系式.
(3)在(2)的条件下,以点A为圆心,2为半径作⊙A,过点C作不经过第三象限的直线l与⊙A相切,切点为Q, 直线l与y轴交于点E,作QH⊥AE于H,交x轴于点G,是否存在t值,使
,若存在,求出t值;若不存在,请说明理由.
查看习题详情和答案>>
(本题满分10分)
如图,在平面直角坐标系中,直线AB:
分别与x轴、y轴交于点A、B,
.


(1)求b的值.
(2)动点C从A点出发以2个单位/秒的速度沿x轴的正半轴运动,动点D从B点出发以1个单位/秒的速度沿y轴的正半轴运动.运动时间为t(t>0),过A作x轴的垂线交直线CD于点P,过P作y轴的垂线交直线AB于点F,设线段BF的长为d(d>0),求d与t的函数关系式.
(3)在(2)的条件下,以点A为圆心,2为半径作⊙A,过点C作不经过第三象限的直线l与⊙A相切,切点为Q, 直线l与y轴交于点E,作QH⊥AE于H,交x轴于点G,是否存在t值,使
,若存在,求出t值;若不存在,请说明理由.
如图,在平面直角坐标系中,直线AB:
(1)求b的值.
(2)动点C从A点出发以2个单位/秒的速度沿x轴的正半轴运动,动点D从B点出发以1个单位/秒的速度沿y轴的正半轴运动.运动时间为t(t>0),过A作x轴的垂线交直线CD于点P,过P作y轴的垂线交直线AB于点F,设线段BF的长为d(d>0),求d与t的函数关系式.
(3)在(2)的条件下,以点A为圆心,2为半径作⊙A,过点C作不经过第三象限的直线l与⊙A相切,切点为Q, 直线l与y轴交于点E,作QH⊥AE于H,交x轴于点G,是否存在t值,使