摘要:三角形的面积 (1)一般三角形:S= (2)直角三角形:S= = (a,b是直角边.c是斜边.h是斜边上的高) (3)等边三角形:S= 例1. 折叠长方形的一边AD.使点D落在BC边上的点F处.已知AB=8cm, BC=10cm,求CE的长. 分析:AFE是ADE翻折得到的.则AFE ADE 习题1.如果ABC∽.相似比k=1∶2, ABC与的周长比为 ,ABC与的对应高线比为 , ABC与的对应边的中线比为 , 与ABC的对应角的角平分线比为 , ABC与的面积比为 .

网址:http://m.1010jiajiao.com/timu3_id_454397[举报]

问题提出

我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.

问题解决

如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

类比应用

1.已知:多项式M =2a2-a+1 ,N =a2-2a .试比较M与N的大小.

2.已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边

满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶

点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。                     

     ①这样的长方形可以画       个;

②所画的长方形中哪个周长最小?为什么?

拓展延伸                                                                                                                               

     已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

 

 

查看习题详情和答案>>

问题提出

我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.

问题解决

如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

类比应用

1.已知:多项式M =2a2-a+1 ,N =a2-2a .试比较M与N的大小.

2.已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边

满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶

点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。                     

      ①这样的长方形可以画        个;

②所画的长方形中哪个周长最小?为什么?

拓展延伸                                                                                                                               

     已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

 

 

查看习题详情和答案>>
问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.
解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
(1)已知:多项式M=2a2-a+1,N=a2-2a.试比较M与N的大小.
(2)已知:如图2,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a<b<c,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上.
①这样的长方形可以画______个;
②所画的长方形中哪个周长最小?为什么?
拓展延伸
已知:如图3,锐角△ABC(其中BC为a,AC为b,AB为c)三边满足a<b<c,画其BC边上的内接正方形EFGH,使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

查看习题详情和答案>>
如图的格点图中,每行(列)相邻两个格点之间都相距1个长度单位.
(1)如图,格点C与格点A、B构成的三角形ABC的面积是2,还有一些格点与格点A、B构成的三角形面积也是2,请找出所有这样的格点,并在图上标示出来.

(2)有些格点与格点A、B可以构成等腰三角形ABD,请你找出所有这样的格点D,并在图中标出.

(3)问题(2)所得到的等腰三角形中有没有等边三角形?如有,将它们标示出来;
如没有,思考:在下面的8*8格点图中,是否存在以格点为顶点的等边三角形,如果存在,请标示出来,如果不存在,说明理由,一般地,对于任意大的格点图(如100*100个点的格点图),这个结论是否成立?

(4)问题(2)所得到的等腰三角形中有没有以AB为腰的等腰直角三角形,有没有以AB为底的等腰直角三角形?
一般地,在充分大的格点图中,对于任意给定的两个格点,是否一定存在以这两个格点所在线段为腰的等腰直角三角形?如果一定有,说明你的构造方法;如果不一定有,思考:对于什么样的两点(即两点的坐标之间满足什么条件时)有.
在充分大的格点图中,对于任意给定的两个格点,是否一定存在以这两个格点所在线段为底的等腰直角三角形?如果一定有,说明你的构造方法;如果不一定有,思考:对于什么样的两点(即两点的坐标之间满足什么条件时)有.
查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网