摘要:5.设函数.则其反函数的图象是( ) A B C D
网址:http://m.1010jiajiao.com/timu3_id_4472192[举报]
设函数f(x)的定义域为D,若存在x∈D,使f(x)=x成立,则称以(x,x)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=图象上有两个关于原点对称的不动点,求a,b应满足的条件;
(2)在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A、B,点M为函数图象上的另一点,且其纵坐标yM>3,求点M到直线AB距离的最小值及取得最小值时M点的坐标;
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点的有奇数个”是否正确?若正确,给出证明,并举一例;若不正确,请举一反例说明.
查看习题详情和答案>>
(1)若函数f(x)=图象上有两个关于原点对称的不动点,求a,b应满足的条件;
(2)在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A、B,点M为函数图象上的另一点,且其纵坐标yM>3,求点M到直线AB距离的最小值及取得最小值时M点的坐标;
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点的有奇数个”是否正确?若正确,给出证明,并举一例;若不正确,请举一反例说明.
查看习题详情和答案>>
给出下列四个命题:
①“向量
,
的夹角为锐角”的充要条件是“
•
>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
)>
;
③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象.
其中真命题的序号是 .(请写出所有真命题的序号)
查看习题详情和答案>>
①“向量
a |
b |
a |
b |
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
x1+x2 |
2 |
f(x1)+f(x2) |
2 |
③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象.
其中真命题的序号是