网址:http://m.1010jiajiao.com/timu3_id_4471887[举报]
解:因为有负根,所以在y轴左侧有交点,因此
解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点
(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数
数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。
查看习题详情和答案>>学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数的分布列和数学期望。
【解析】第一问中,由已知条件结合n此独立重复试验的概率公式可知,得
第二问中可能的取值为0,1,2,3 ,
,
从而得到分布列和期望值
解:(I)由已知条件得 ,即,则的值为。
(Ⅱ)可能的取值为0,1,2,3 ,
,
的分布列为:(1分)
0 |
1 |
2 |
3 |
|
所以
查看习题详情和答案>>
如图,在三棱柱中,侧面,为棱上异于的一点,,已知,求:
(Ⅰ)异面直线与的距离;
(Ⅱ)二面角的平面角的正切值.
【解析】第一问中,利用建立空间直角坐标系
解:(I)以B为原点,、分别为Y,Z轴建立空间直角坐标系.由于,
在三棱柱中有
,
设
又侧面,故. 因此是异面直线的公垂线,则,故异面直线的距离为1.
(II)由已知有故二面角的平面角的大小为向量与的夹角.
查看习题详情和答案>>