摘要: 设.为常数.:把平面上任意一点 (.)映射为函数 (1)证明:不存在两个不同点对应于同一个函数, (2)证明:当时..这里t为常数, (3)对于属于M的一个固定值.得.在映射F的作用下.M1作为象.求其原象.并说明它是什么图象? 答案:
网址:http://m.1010jiajiao.com/timu3_id_4471482[举报]
设a、b为常数,M={f(x)|f(x)=acosx+bsinx};F:把平面上任意一点(a,b)映射为函数acosx+bsinx.
(1)证明:不存在两个不同点对应于同一个函数;
(2)证明:当f0(x)∈M时,f1(x)=f0(x+t)∈M,这里t为常数;
(3)对于属于M的一个固定值f0(x),得M1={f0(x+t),t∈R},在映射F的作用下,M1作为象,求其原象,并说明它是什么图象?
设a、b为常数,M={f(x)|f(x)=acosx+bsinx,x∈R};F:把平面上任意一点(a,b)映射为函数acosx+bsinx.
(1)证明:对F不存在两个不同点对应于同一个函数;
(2)证明:当f0(x)∈M时,f1(x)=f0(x+t)∈M,这里t为常数;
(3)对于属于M的一个固定值f0(x),得M1={f0(x+t)|t∈R},若映射F的作用下点(m,n)的象属于M1,问:由所有符合条件的点(m,n)构成的图形是什么?
查看习题详情和答案>>
(1)证明:对F不存在两个不同点对应于同一个函数;
(2)证明:当f0(x)∈M时,f1(x)=f0(x+t)∈M,这里t为常数;
(3)对于属于M的一个固定值f0(x),得M1={f0(x+t)|t∈R},若映射F的作用下点(m,n)的象属于M1,问:由所有符合条件的点(m,n)构成的图形是什么?
设a、b为常数,M={f(x)|f(x)=acosx+bsinx,x∈R};F:把平面上任意一点(a,b)映射为函数acosx+bsinx.
(1)证明:对F不存在两个不同点对应于同一个函数;
(2)证明:当f(x)∈M时,f1(x)=f(x+t)∈M,这里t为常数;
(3)对于属于M的一个固定值f(x),得M1={f(x+t)|t∈R},若映射F的作用下点(m,n)的象属于M1,问:由所有符合条件的点(m,n)构成的图形是什么?
查看习题详情和答案>>
(1)证明:对F不存在两个不同点对应于同一个函数;
(2)证明:当f(x)∈M时,f1(x)=f(x+t)∈M,这里t为常数;
(3)对于属于M的一个固定值f(x),得M1={f(x+t)|t∈R},若映射F的作用下点(m,n)的象属于M1,问:由所有符合条件的点(m,n)构成的图形是什么?
查看习题详情和答案>>