摘要:21. 如图.M是抛物线上y2=x上的一点.动弦ME.MF分别交x轴于A.B两点.且MA=MB. (1)若M为定点.证明:直线EF的斜率为定值, (2)若M为动点.且∠EMF=90°.求△EMF的重心G的轨迹方程.
网址:http://m.1010jiajiao.com/timu3_id_4468807[举报]
(本小题满分12分) 设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值.
查看习题详情和答案>>. (本小题满分12分)
如图,设抛物线C1:的准线与x轴交于F1,焦点为F2 ;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在X轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线上一动点,且M在P与Q之间运动.
(I)当m = 1时,求椭圆C2的方程;
(II)当的边长恰好是三个连续的自然数时,求面积的最大值.
查看习题详情和答案>>
. (本小题满分12分)
如图,设抛物线C1:的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在X轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线上一动点,且M在P与Q之间运动.
(I)当m =1时,求椭圆C2的方程;
(II)当的边长恰好是三个连续的自然数时,求面积的最大值.
如图,设抛物线C1:的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在X轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线上一动点,且M在P与Q之间运动.
(I)当m =1时,求椭圆C2的方程;
(II)当的边长恰好是三个连续的自然数时,求面积的最大值.