摘要:2. ( ) A. B. C. D. 解:,选(D)
网址:http://m.1010jiajiao.com/timu3_id_4468726[举报]
选做题(请考生在三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分).
(A)(坐标系与参数方程) 在极坐标系中,过圆ρ=6cosθ的圆心,且垂直于极轴的直线的极坐标方程为 .
(B)(不等式选讲)已知关于x的不等式|x+a|+|x-1|+a<2011(a是常数)的解是非空集合,则a的取值范围 .
(C)(几何证明选讲)如图:若PA=PB,∠APB=2∠ACB,AC与PB交于点D,且PB=4,PD=3,则AD•DC= .
查看习题详情和答案>>
(A)(坐标系与参数方程) 在极坐标系中,过圆ρ=6cosθ的圆心,且垂直于极轴的直线的极坐标方程为 .
(B)(不等式选讲)已知关于x的不等式|x+a|+|x-1|+a<2011(a是常数)的解是非空集合,则a的取值范围 .
(C)(几何证明选讲)如图:若PA=PB,∠APB=2∠ACB,AC与PB交于点D,且PB=4,PD=3,则AD•DC= .
查看习题详情和答案>>
选做题(请考生在三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分).
(A)(坐标系与参数方程) 在极坐标系中,过圆ρ=6cosθ的圆心,且垂直于极轴的直线的极坐标方程为________.
(B)(不等式选讲)已知关于x的不等式|x+a|+|x-1|+a<2011(a是常数)的解是非空集合,则a的取值范围________.
(C)(几何证明选讲)如图:若PA=PB,∠APB=2∠ACB,AC与PB交于点D,且PB=4,PD=3,则AD•DC=________.
查看习题详情和答案>>
在A,B,C,D四小题中只能选做2题,每题10分,共计20分.
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
+
=1在M-1的作用下的新曲线的方程.
C、已知某圆的极坐标方程为:ρ2-4
ρcos(θ-
)+6=0.
(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围. 查看习题详情和答案>>
A、如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求证:PE是⊙O的切线.
B、设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2 |
4 |
y2 |
9 |
C、已知某圆的极坐标方程为:ρ2-4
2 |
π |
4 |
(Ⅰ)将极坐标方程化为普通方程;并选择恰当的参数写出它的参数方程;
(Ⅱ)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D、若关于x的不等式|x+2|+|x-1|≥a的解集为R,求实数a的取值范围. 查看习题详情和答案>>
(选修4-2:矩阵与变换)在军事密码学中,发送密码时,先将英文字母数学化,对应如下表:
如果已发现发送方传出的密码矩阵为
,双方约定可逆矩阵为
,试破解发送的密码.
查看习题详情和答案>>
a | b | c | d | … | z |
1 | 2 | 3 | 4 | … | 26 |
|
|
在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答题纸指定区域内 作答.解答应写出文字说明、证明过程或演算步骤.
A.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.
B.已知二阶矩阵属于特征值-1的一个特征向量为,求矩阵A的逆矩阵.
C.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为(t为参数,t∈{R}).试求曲线C上点M到直线l的距离的最大值.
D.(1)设x是正数,求证:(1+x)(1+x2)(1+x3)≥8x3;
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,请给出证明;如果不成立,请举出一个使它不成立的x的值.
查看习题详情和答案>>
A.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.
B.已知二阶矩阵属于特征值-1的一个特征向量为,求矩阵A的逆矩阵.
C.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为(t为参数,t∈{R}).试求曲线C上点M到直线l的距离的最大值.
D.(1)设x是正数,求证:(1+x)(1+x2)(1+x3)≥8x3;
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,请给出证明;如果不成立,请举出一个使它不成立的x的值.
查看习题详情和答案>>