摘要:17.袋子A和B中装有若干个均匀的红球和白球.从A中摸出一个红球的概率是.从B中摸出一个红球的概率为p. (Ⅰ) 从A中有放回地摸球.每次摸出一个.共摸5次.(i)恰好有3次摸到红球的概率,(ii)第一次.第三次.第五次摸到红球的概率. (Ⅱ) 若A.B两个袋子中的球数之比为12.将A.B中的球装在一起后.从中摸出一个红球的概率是.求p的值. 解: (ii) (iii)设袋子A中有m个球,则袋子B中有2m个球, 由,得p=.
网址:http://m.1010jiajiao.com/timu3_id_4468692[举报]
袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是
,从B中摸出一个红球的概率为p.
(Ⅰ)从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.
(i)求恰好摸5次停止的概率;
(ii)记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布率及数学期望Eξ.
(Ⅱ)若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是
,求p的值.
查看习题详情和答案>>
1 |
3 |
(Ⅰ)从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.
(i)求恰好摸5次停止的概率;
(ii)记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布率及数学期望Eξ.
(Ⅱ)若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是
2 |
5 |
袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是
,从B中摸出一个红球的概率为P.
(1)从A中有放回地摸球,每次摸出一个,共摸4次.
①恰好有2次摸到红球的概率;②第一次、第三次摸到红球的概率.
(2)若A、B两个袋子中的球数之比为4,将A、B中的球装在一起后,从中摸出一个红球的概率是
,求P的值.
查看习题详情和答案>>
1 |
3 |
(1)从A中有放回地摸球,每次摸出一个,共摸4次.
①恰好有2次摸到红球的概率;②第一次、第三次摸到红球的概率.
(2)若A、B两个袋子中的球数之比为4,将A、B中的球装在一起后,从中摸出一个红球的概率是
2 |
5 |
袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是
,从B中摸出一个红球的概率是
.现从两个袋子中有放回的摸球•
(I)从A中摸球,每次摸出一个,共摸5次.求:
(i)恰好有3次摸到红球的概率;
(ii)设摸得红球的次数为随机变量X,求X的期望;
(Ⅱ)从A中摸出一个球,若是白球则继续在袋子A中摸球,若是红球则在袋子B中摸球,若从袋子B中摸出的是白球则继续在袋子B中摸球,若是红球则在袋子A中摸球,如此反复摸球3次,计摸出的红球的次数为Y,求Y的分布列以及随机变量Y的期望.
查看习题详情和答案>>
1 |
3 |
2 |
3 |
(I)从A中摸球,每次摸出一个,共摸5次.求:
(i)恰好有3次摸到红球的概率;
(ii)设摸得红球的次数为随机变量X,求X的期望;
(Ⅱ)从A中摸出一个球,若是白球则继续在袋子A中摸球,若是红球则在袋子B中摸球,若从袋子B中摸出的是白球则继续在袋子B中摸球,若是红球则在袋子A中摸球,如此反复摸球3次,计摸出的红球的次数为Y,求Y的分布列以及随机变量Y的期望.