摘要:在双曲线上有一个点P.F1.F2为该双曲线的两个焦点.∠F1PF2=90°. 且△F1PF2的三条边长成等差数列.则此双曲线的离心率是 ( ) A.2 B.3 C.4 D.5
网址:http://m.1010jiajiao.com/timu3_id_4466770[举报]
设F1、F2分别为椭圆C:
+
=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线
-
=1写出具有类似特性的性质,并加以证明.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
(1)若椭圆C上的点A(1,
3 |
2 |
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线
x2 |
a2 |
y2 |
b2 |
16.已知F1、F2为双曲线=1(a>0,b>0且a≠b)的两个焦点,P为双曲线右支上异于顶点的任意一点,O为坐标原点.下面四个命题
(A)△PF1F2的内切圆的圆心必在直线x=a上;
(B)△PF1F2的内切圆的圆心必在直线x=b上;
(C)△PF1F2的内切圆的圆心必在直线OP上;
(D)△PF1F2的内切圆必通过点(a,0).
其中真命题的代号是__________(写出所有真命题的代号).
查看习题详情和答案>>(14分)设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.
查看习题详情和答案>>