摘要:20. 设M是椭圆C:上的一点.P.Q.T分别为点M关于y轴.原点.x轴的对称点. N为椭圆C上异于点M的另一点.且MN⊥MQ.QN与PT的交点为E.当M沿椭圆C运动时.求动点E的轨迹方程.
网址:http://m.1010jiajiao.com/timu3_id_4466714[举报]
(本小题满分13分)已知、,椭圆C的方程为,、分别为椭圆C的两个焦点,设为椭圆C上一点,存在以为圆心的与外切、与内切
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作斜率为的直线与椭圆C相交于A、B两点,与轴相交于点D,若
求的值;
(Ⅲ)已知真命题:“如果点T()在椭圆上,那么过点T
的椭圆的切线方程为=1.”利用上述结论,解答下面问题:
已知点Q是直线上的动点,过点Q作椭圆C的两条切线QM、QN,
M、N为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作斜率为的直线与椭圆C相交于A、B两点,与轴相交于点D,若
求的值;
(Ⅲ)已知真命题:“如果点T()在椭圆上,那么过点T
的椭圆的切线方程为=1.”利用上述结论,解答下面问题:
已知点Q是直线上的动点,过点Q作椭圆C的两条切线QM、QN,
M、N为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。