摘要:在平面向量中.如果.不共线.并且=(1-t) +t,则A.B.P共线.拓展到空间.对空间任意一点O和不共线的三点A.B.C.如果四点共面.则有 .
网址:http://m.1010jiajiao.com/timu3_id_4464724[举报]
在平面向量中,下列说法正确的是( )
A.如果两个向量的长度相等,那么这两个向量相等
B.如果两个向量平行,那么这两个向量的方向相同
C.如果两个向量平行并且它们的模相等,那么这两个向量相等
D.同向且等长的有向线段表示同一向量
查看习题详情和答案>>
在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线l与圆Q相交于不同的两点A,B.
(Ⅰ)求圆Q的面积;
(Ⅱ)求k的取值范围;
(Ⅲ)是否存在常数k,使得向量
+
与
共线?如果存在,求k的值;如果不存在,请说明理由.
查看习题详情和答案>>
(Ⅰ)求圆Q的面积;
(Ⅱ)求k的取值范围;
(Ⅲ)是否存在常数k,使得向量
OA |
OB |
PQ |
平面向量
=(
,-1),
=(
,
),若存在不同时为o的实数k和x,使
=
+(x2-3)
,
=-k
+x
,
⊥
.
(Ⅰ)试求函数关系式k=f(x).
(Ⅱ)对(Ⅰ)中的f(x),设h(x)=4f(x)-ax2在[1,+∞)上是单调函数.
①求实数a的取值范围;
②当a=-1时,如果存在x0≥1,h(x0)≥1,且h(h(x0))=x0,求证:h(x0)=x0.
查看习题详情和答案>>
a |
3 |
b |
1 |
2 |
| ||
2 |
m |
a |
b |
n |
a |
b |
m |
n |
(Ⅰ)试求函数关系式k=f(x).
(Ⅱ)对(Ⅰ)中的f(x),设h(x)=4f(x)-ax2在[1,+∞)上是单调函数.
①求实数a的取值范围;
②当a=-1时,如果存在x0≥1,h(x0)≥1,且h(h(x0))=x0,求证:h(x0)=x0.