摘要:20.已知函数若f(x)在x=0处可导.求a,b的值 21*.求证:双曲线在任一点处的切线与两坐标轴构成的三角形面积等于常数 答案:一.ABCDD ABCCB BA,二.13.
网址:http://m.1010jiajiao.com/timu3_id_4463358[举报]
已知函数f(x)是在(0,+∞)上每一点处可导的函数,若xf′(x)>f(x)在(0,+∞)上恒成立.
(Ⅰ)求证:函数g(x)=
在(0,+∞)上单调递增;
(Ⅱ)当x1>0,x2>0时,证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0时恒成立,证明:
ln22+
ln32+
ln42+…+
ln(n+1)2>
(n∈N+).
查看习题详情和答案>>
(Ⅰ)求证:函数g(x)=
f(x) |
x |
(Ⅱ)当x1>0,x2>0时,证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0时恒成立,证明:
1 |
22 |
1 |
32 |
1 |
42 |
1 |
(n+1)2 |
n |
2(n+1)(n+2) |
已知函数f(x)是在(0,+∞)上每一点处均可导的函数,若xf′(x)>f(x)在(0,+∞)上恒成立.
(Ⅰ)①求证:函数g(x)=
在(0,+∞)上是增函数;
②当x1>0,x2>0时,证明:f(x1)+f(x2)<f(x1+x2);
(Ⅱ)已知不等式ln(x+1)<x在x>-1且x≠0时恒成立,求证:
ln22+
ln32+
ln42+…+
ln(n+1)2>
,(n∈N*).
查看习题详情和答案>>
(Ⅰ)①求证:函数g(x)=
f(x) |
x |
②当x1>0,x2>0时,证明:f(x1)+f(x2)<f(x1+x2);
(Ⅱ)已知不等式ln(x+1)<x在x>-1且x≠0时恒成立,求证:
1 |
22 |
1 |
32 |
1 |
42 |
1 |
(n+1)2 |
n |
2(n+1)(n+2) |
已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
=0在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
<ln
<
(可不用证明函数的连续性和可导性).
查看习题详情和答案>>
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
f(x2)-f(x1) |
x2-x1 |
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
f(b)-f(a) |
b-a |
当0<a<b时,
b-a |
b |
b |
a |
b-a |
a |