摘要:设函数在R上单调.对任意.都有 (1) 判断的奇偶性 (2) 求证:若 (3) 试证:若 高三联考数学试卷
网址:http://m.1010jiajiao.com/timu3_id_4461764[举报]
设函数f(x)的定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,都有f(x+y)=f(x)•f(y),且f(2)=4.
(1)求f(0),f(1)的值;
(2)证明:f(x)在R上为单调递增函数;
(3)若有不等式f(x)•f(1+
)<2成立,求x的取值范围.
查看习题详情和答案>>
(1)求f(0),f(1)的值;
(2)证明:f(x)在R上为单调递增函数;
(3)若有不等式f(x)•f(1+
1 | x |
设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0;f(1)=-2.
(1)求证:f(x)是奇函数;
(2)判断f(x)在R上的单调性,并证明;
(3)求使2≤|f(x)|≤6成立的x的取值范围.
查看习题详情和答案>>
(1)求证:f(x)是奇函数;
(2)判断f(x)在R上的单调性,并证明;
(3)求使2≤|f(x)|≤6成立的x的取值范围.