摘要: 设., (1)将表示为的函数.并求出的定义域, (2)若关于的方程有且仅有一个实根.求的取值范围. 解:(1) (2)
网址:http://m.1010jiajiao.com/timu3_id_4461581[举报]
(13分)围建一个面积为的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为的进出口,如图所示。已知旧墙的维修费用为元,新墙的造价为元。设利用的旧墙长度为(单位:),修建此矩形场地围墙的总费用为(单位:元)。
( I )将表示为的函数;
( Ⅱ )试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
查看习题详情和答案>>
某地为促进淡水养殖业的发展,将价格控制在适当范围内,决定对淡水养殖提供政府补贴.设淡水鱼的市场价格为x元/千克,政府补贴为t元/千克,根据市场调查,当8≤x≤14时,淡水鱼的市场日供应量P千克与市场日需求量Q千克近似地满足关系:
P=1 000(x+t-8)(x≥8,t≥0),Q=500(0≤x≤14),
当P=Q时的市场价格称为市场平衡价格.
(1)将市场平衡价格表示为政府补贴的函数,并求出函数的定义域.
(2)为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元?
如图所示,是一个矩形花坛,其中AB= 4米,AD = 3米.现将矩形花坛扩建成一个更大的矩形花园,要求:B在上,D在上,对角线过C点, 且矩形的面积小于64平方米.
(Ⅰ)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并写出该函数的定义域;
(Ⅱ)当的长度是多少时,矩形的面积最小?并求最小面积.
查看习题详情和答案>>