摘要:24.对于函数f(x).若存在x0∈R.使f(x0)=x0成立.则称x0为f(x)的不动点.已知函数f(x)=ax2+. (1)当a=1,b=-2时.求函数f(x)的不动点, (2)若对任意实数b.函数f(x)恒有两个相异的不动点.求a的取值范围, 的条件下.若y=f(x)图象上A.B两点的横坐标是函数f(x)的不动点.且A.B两点关于直线y=kx+1/(2a2+1)对称.求b的最小值.
网址:http://m.1010jiajiao.com/timu3_id_4461241[举报]
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数
f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2.
⑴若x1<1<x2,且f(x)的图象关于直线x=m对称,求证:
<m<1;
⑵若|x1|<2且|x1-x2|=2,求b的取值范围.
查看习题详情和答案>>对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数
f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2.
⑴若x1<1<x2,且f(x)的图象关于直线x=m对称,求证:
<m<1;
⑵若|x1|<2且|x1-x2|=2,求b的取值范围.
f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2.
⑴若x1<1<x2,且f(x)的图象关于直线x=m对称,求证:
⑵若|x1|<2且|x1-x2|=2,求b的取值范围.