摘要:D 2.C 3.B 4.A 5.B 6.C 解题指导:
网址:http://m.1010jiajiao.com/timu3_id_446124[举报]
阅读下列解题过程,借鉴其中一种方法解答后面给出的试题:
问题:某人买13个鸡蛋,5个鸭蛋、9个鹅蛋共用去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共用去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元.
分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x、y、z元,则需要求x+y+z的值.由题意,知
;
视x为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解.
解法1:视x为常数,依题意得
.
解这个关于y、z的二元一次方程组得
.
于是x+y+z=x+0.05+x+1-2x=1.05.
评注:也可以视z为常数,将上述方程组看成是关于x、y的二元一次方程组,解答方法同上,你不妨试试.
分析:视x+y+z为整体,由(1)、(2)恒等变形得5(x+y+z)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20.
解法2:设x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下关于a、b的二元一次方
程组
.
由⑤+4×⑥,得21a+22.05,a=1.05.
评注:运用整体的思想方法指导解题.视x+y+z,2x+z为整体,令a=x+y+z,b=2x+z,代入①、②将原方程组转化为关于a、b的二元一次方程组从而获解.
请你运用以上介绍的任意一种方法解答如下数学竞赛试题:
购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:

那么,购买每种教学用具各一件共需多少元? 查看习题详情和答案>>
问题:某人买13个鸡蛋,5个鸭蛋、9个鹅蛋共用去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共用去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元.
分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x、y、z元,则需要求x+y+z的值.由题意,知
|
视x为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解.
解法1:视x为常数,依题意得
|
解这个关于y、z的二元一次方程组得
|
于是x+y+z=x+0.05+x+1-2x=1.05.
评注:也可以视z为常数,将上述方程组看成是关于x、y的二元一次方程组,解答方法同上,你不妨试试.
分析:视x+y+z为整体,由(1)、(2)恒等变形得5(x+y+z)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20.
解法2:设x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下关于a、b的二元一次方
程组
|
由⑤+4×⑥,得21a+22.05,a=1.05.
评注:运用整体的思想方法指导解题.视x+y+z,2x+z为整体,令a=x+y+z,b=2x+z,代入①、②将原方程组转化为关于a、b的二元一次方程组从而获解.
请你运用以上介绍的任意一种方法解答如下数学竞赛试题:
购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:
那么,购买每种教学用具各一件共需多少元? 查看习题详情和答案>>
阅读下列解题过程,借鉴其中一种方法解答后面给出的试题:
问题:某人买13个鸡蛋,5个鸭蛋、9个鹅蛋共用去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共用去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元.
分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x、y、z元,则需要求x+y+z的值.由题意,知
;
视x为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解.
解法1:视x为常数,依题意得
.
解这个关于y、z的二元一次方程组得
.
于是x+y+z=x+0.05+x+1-2x=1.05.
评注:也可以视z为常数,将上述方程组看成是关于x、y的二元一次方程组,解答方法同上,你不妨试试.
分析:视x+y+z为整体,由(1)、(2)恒等变形得5(x+y+z)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20.
解法2:设x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下关于a、b的二元一次方
程组
.
由⑤+4×⑥,得21a+22.05,a=1.05.
评注:运用整体的思想方法指导解题.视x+y+z,2x+z为整体,令a=x+y+z,b=2x+z,代入①、②将原方程组转化为关于a、b的二元一次方程组从而获解.
请你运用以上介绍的任意一种方法解答如下数学竞赛试题:
购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:

那么,购买每种教学用具各一件共需多少元?
查看习题详情和答案>>
阅读下列解题过程,借鉴其中一种方法解答后面给出的试题:
问题:某人买13 个鸡蛋,5 个鸭蛋、9 个鹅蛋共用去了9.25 元;买2 个鸡蛋,4 个鸭蛋、3 个鹅蛋共用去了3.20 元,试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元。
分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x 、y 、z 元,则需要求x+y+z 的值,
由题意,知
;
视x为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解。
解法1:视x为常数,依题意得
解这个关于y、z的二元一次方程组得
于是x+y+z=x+0.05+x+1-2x=1.05。
评注:也可以视z为常数,将上述方程组看成是关于x、y的二元一次方程组。
解答方法同上,你不妨试试.分析:视x+y+z为整体,由(1)、(2)恒等变形得
5(x+y+x)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20。
解法2:设x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下关于a、b的二元一次方程组
由⑤+4×⑥,得21a=22.05,a=1.05。
评注:运用整体的思想方法指导解题,视x+y+z,2x+z为整体,
令a=x+y+z,b=2x+z,代人①、②将原方程组转化为关于a、b的二元一次方程组从而获解。
请你运用以上介绍的任意一种方法解答如下数学竞赛试题:购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:
问题:某人买13 个鸡蛋,5 个鸭蛋、9 个鹅蛋共用去了9.25 元;买2 个鸡蛋,4 个鸭蛋、3 个鹅蛋共用去了3.20 元,试问只买鸡蛋、鸭蛋、鹅蛋各一个共需多少元。
分析:设买鸡蛋,鸭蛋、鹅蛋各一个分别需x 、y 、z 元,则需要求x+y+z 的值,
由题意,知
视x为常数,将上述方程组看成是关于y、z的二元一次方程组,化“三元”为“二元”、化“二元”为“一元”从而获解。
解法1:视x为常数,依题意得
解这个关于y、z的二元一次方程组得
于是x+y+z=x+0.05+x+1-2x=1.05。
评注:也可以视z为常数,将上述方程组看成是关于x、y的二元一次方程组。
解答方法同上,你不妨试试.分析:视x+y+z为整体,由(1)、(2)恒等变形得
5(x+y+x)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20。
解法2:设x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下关于a、b的二元一次方程组
由⑤+4×⑥,得21a=22.05,a=1.05。
评注:运用整体的思想方法指导解题,视x+y+z,2x+z为整体,
令a=x+y+z,b=2x+z,代人①、②将原方程组转化为关于a、b的二元一次方程组从而获解。
请你运用以上介绍的任意一种方法解答如下数学竞赛试题:购买五种教学用具A1、A2、A3、A4、A5的件数和用钱总数列成下表:
那么,购买每种教学用具各一件共需多少元?
查看习题详情和答案>>
| 分组 | 频数 | 频率 |
| C | 10 | 0.10 |
| B | 0.50 | |
| A | 40 | |
| 合计 | 1.00 |
(2)如果成绩为A等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?
为落实“健康第一”的指导思想,大力推进素质教育,促进青少年学生健康成长的重要措施.黄冈市2012年初中毕业升学体育考试作为一定改革:考试项目2012年初中毕业生升学体育考试采取现场测试的方法,共三项:①坐位体前屈;②跳绳;③1000米跑(男生)、800米跑(女生).某校对九年级学生体育测试情况进行调研,从该校360名九年级学生中抽取了部分学生的成绩(成绩分为A、B、C三个层次)进行分析,绘制了频数分布表与频数分布直方图(如图),请根据图表信息解答下列问题:
| 分组 | 频数 | 频率 |
| C | 10 | 0.10 |
| B | 0.50 | |
| A | 40 | |
| 合计 | 1.00 |
(2)如果成绩为A等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平? 查看习题详情和答案>>