摘要:21.设函数f(x)=a+与g(x)=x+1.若恒有f(x)≤g(x)成立.试求实数a的取值范围.
网址:http://m.1010jiajiao.com/timu3_id_4460741[举报]
设函数f(x)=x3+3ax2+bx+c,g(x)=x2-3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.
(Ⅰ)求a、b的值,并写出切线l的方程;
(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数m的取值范围.
已知函数f(x)=lnx,g(x)=
(a>0),设F(x)=f(x)+g(x).
(I)求函数F(x)的单调区间;
(II)若以函数y=F(x)(x∈(0,3])的图象上任意一点P(x0,y0)为切点的切线的斜率k≤
恒成立,求实数a的最小值;
(III)是否存在实数m,使得函数y=g(
)+m-1的图象与函数y=f(1+x2)的图象恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,请说明理由.
查看习题详情和答案>>
a |
x |
(I)求函数F(x)的单调区间;
(II)若以函数y=F(x)(x∈(0,3])的图象上任意一点P(x0,y0)为切点的切线的斜率k≤
1 |
3 |
(III)是否存在实数m,使得函数y=g(
2a |
x2+1 |
已知函数f(x)=lnx,,设F(x)=f(x)+g(x).
(Ⅰ)求函数F(x)的单调区间;
(Ⅱ)若以函数y=F(x),x∈(0,3]图像上任意一点P(x0,y0)为切点的切线的斜率k≤恒成立,求实数a的最小值;
(Ⅲ)是否存在实数m,使得函数的图像与函数y=f(1+x2)的图像恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,说明理由.
已知函数f(x)=lnx,g(x)=
(a>0),设F(x)=f(x)+g(x).
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以y=F(x)(x∈(0,3])图象上任意一点P(x0,y0)为切点的切线的斜率 k≤
恒成立,求实数a的最小值.
(Ⅲ)是否存在实数m,使得函数y=g(
)+m-1的图象与y=f(1+x2)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.
查看习题详情和答案>>
a |
x |
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以y=F(x)(x∈(0,3])图象上任意一点P(x0,y0)为切点的切线的斜率 k≤
1 |
2 |
(Ⅲ)是否存在实数m,使得函数y=g(
2a |
x2+1 |