网址:http://m.1010jiajiao.com/timu3_id_4458061[举报]
| 2 |
| 2 |
| AE |
| 3 |
| ON |
| 1 |
| 2 |
| OA |
| OF |
(1)求轨迹C的方程;
(2)若轨迹C上存在两点P和Q关于直线l:y=k(x+1)(k≠0)对称,求k的取值范围;
(3)在(2)的条件下,设直线l与轨迹C交于不同的两点R、S,对点B(1,0)和向量a=(-
| 3 |
| BR |
| BS |
已知直三棱柱
中,
,
,
是
和
的交点, 若
.
(1)求
的长; (2)求点
到平面
的距离;
(3)求二面角
的平面角的正弦值的大小.
![]()
【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACC
A
为正方形,
AC=3
第二问中,利用面BB
C
C内作CD
BC
,
则CD就是点C平面A
BC
的距离CD=
,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为![]()
解法一: (1)连AC
交A
C于E, 易证ACC
A
为正方形,
AC=3
…………… 5分
(2)在面BB
C
C内作CD
BC
,
则CD就是点C平面A
BC
的距离CD=
… 8分
(3) 易得AC![]()
面A
CB,
过E作EH
A
B于H, 连HC
,
则HC![]()
A
B
![]()
C
HE为二面角C
-A
B-C的平面角. ……… 9分
sin
C
HE=![]()
二面角C
-A
B-C的平面角的正弦大小为
……… 12分
解法二: (1)分别以直线C
B、CC
、C
A为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C
(0,
0, 0), B
(4,
0, 0), B(4, -3, 0), C(0, -3,
0), A
(0,
0, h), A(0, -3, h), G(2, -
, -
) ……………………… 3分
![]()
=(2, -
, -
),
=(0,
-3, -h) ……… 4分
![]()
·
=0,
h=3
(2)设平面A
BC
得法向量
=(a, b, c),则可求得
=(3, 4, 0) (令a=3)
点A到平面A
BC
的距离为H=|
|=
……… 8分
(3) 设平面A
BC的法向量为
=(x, y, z),则可求得
=(0, 1, 1) (令z=1)
二面角C
-A
B-C的大小
满足cos
=
=
………
11分
二面角C
-A
B-C的平面角的正弦大小为![]()
查看习题详情和答案>>