网址:http://m.1010jiajiao.com/timu3_id_4456091[举报]
在棱长为的正方体
中,
是线段
的中点,
.
(1) 求证:^
;
(2) 求证://平面
;
(3) 求三棱锥的表面积.
【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定
为平行四边形,然后
,可知结论成立。
第三问中,是边长为
的正三角形,其面积为
,
因为平面
,所以
,
所以是直角三角形,其面积为
,
同理的面积为
,
面积为
. 所以三棱锥
的表面积为
.
解: (1)证明:根据正方体的性质,
因为,
所以,又
,所以
,
,
所以^
.
………………4分
(2)证明:连接,因为
,
所以为平行四边形,因此
,
由于是线段
的中点,所以
, …………6分
因为面
,
平面
,所以
∥平面
. ……………8分
(3)是边长为
的正三角形,其面积为
,
因为平面
,所以
,
所以是直角三角形,其面积为
,
同理的面积为
,
……………………10分
面积为
. 所以三棱锥
的表面积为
查看习题详情和答案>>
已知数列满足
且对一切
,
有
(Ⅰ)求证:对一切
(Ⅱ)求数列通项公式.
(Ⅲ)求证:
【解析】第一问利用,已知表达式,可以得到,然后得到
,从而求证
。
第二问,可得数列的通项公式。
第三问中,利用放缩法的思想,我们可以得到
然后利用累加法思想求证得到证明。
解: (1) 证明:
查看习题详情和答案>>
已知函数,数列
的项满足:
,(1)试求
(2) 猜想数列的通项,并利用数学归纳法证明.
【解析】第一问中,利用递推关系,
,
第二问中,由(1)猜想得:然后再用数学归纳法分为两步骤证明即可。
解: (1) ,
,
…………….7分
(2)由(1)猜想得:
(数学归纳法证明)i) ,
,命题成立
ii) 假设时,
成立
则时,
综合i),ii) : 成立
查看习题详情和答案>>