摘要:21. 已知抛物线.椭圆.双曲线都经过点M(1.2).它们在x轴上有共同焦点.椭圆和双曲线的对称轴是坐标轴.抛物线的顶点为坐标原点. (Ⅰ)求这三条曲线方程, .A为抛物线上任意一点.是否存在垂直于x轴的直线l被以AP为直径的圆截得的弦长为定值?若存在.求出l的方程,若不存在.说明理由. 武汉市部分重点中学2008--2009学年度新高三起点考试
网址:http://m.1010jiajiao.com/timu3_id_4455566[举报]
(本小题满分14分)
已知抛物线、椭圆、双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点。
(Ⅰ)求这三条曲线方程;
(Ⅱ)若定点P(3,0),A为抛物线上任意一点,是否存在垂直于x轴的直线l被以AP为直径的圆截得的弦长为定值?若存在,求出l的方程;若不存在,说明理由。
查看习题详情和答案>>(本小题满分14分)
已知F1,F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线C于P、Q两个不同的交点,点P关于x轴的对称点记为M.设=λ.
(Ⅰ)求曲线C的方程;
(Ⅱ)证明:=-λ;
(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.
查看习题详情和答案>>
(本小题满分14分)
设
椭圆方程为
抛物线方程为
如图4所示,过点
作
轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点![]()
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标) 。
![]()