摘要:11. 奇函数又是在R上的减函数.对任意实数.恒有成立.求的范围.
网址:http://m.1010jiajiao.com/timu3_id_4453501[举报]
定义在R上的函数f(x),对任意的实数x,y,恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0.又f(1)=-
.
(1)求证:f(x)为奇函数;
(2)求证:f(x)在R上是减函数;
(2)求函数f(x)在[-3,3]上的值域.
查看习题详情和答案>>
2 | 3 |
(1)求证:f(x)为奇函数;
(2)求证:f(x)在R上是减函数;
(2)求函数f(x)在[-3,3]上的值域.
函数f(x) 的定义域为R,且对任意x,y∈R 都有f(x+y)=f(x)+f(y),又
当x>0 时,f(x)<0,且f(1)=-2.
(Ⅰ)求证:f(x) 既是奇函数又是R上的减函数;
(Ⅱ)求f(x)在[-3,3]的最大值和最小值.
当x>0 时,f(x)<0,且f(1)=-2.
(Ⅰ)求证:f(x) 既是奇函数又是R上的减函数;
(Ⅱ)求f(x)在[-3,3]的最大值和最小值.
已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0又f(1)=-2.
(1)判断f(x)的奇偶性;
(2)求证:f(x)是R上的减函数;
(3)求f(x)在区间[-3,3]上的值域;
(4)若?x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.
查看习题详情和答案>>
(1)判断f(x)的奇偶性;
(2)求证:f(x)是R上的减函数;
(3)求f(x)在区间[-3,3]上的值域;
(4)若?x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.