摘要:1.重点:灵活运用直角三角形中边与角的关系.提高把实际问题转化为解直角三角形问题的能力.
网址:http://m.1010jiajiao.com/timu3_id_444020[举报]
(2011•裕华区二模)如图①,将两个等腰直角三角形叠放在一起,使上面三角板的一个锐角顶点与下面三角板的直角顶点重合,并将上面的三角板绕着这个顶点逆时针旋转,在旋转过程中,当下面三角板的斜边被分成三条线段时,我们来研究这三条线段之间的关系.
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.
查看习题详情和答案>>
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.
请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.
现有如图1的8张大小形状相同的直角三角形纸片,三边长分别是a、b、c.用其中4张纸片拼成如图2的大正方形(空白部分是边长分别为a和b的正方形);用另外4张纸片拼成如图3的大正方形(中间的空白部分是边长为c的正方形).

(一)观察:
从整体看,图2和图3的大正方形的面积都可以表示为(a+b)2,结论①依据整个图形的面积等于各部分面积的和.
图2中的大正方形的面积又可以用含字母a、b的代数式表示为:
图3中的大正方形的面积又可以用含字母a、b、c的代数式表示为:
(二)思考:
结合结论①和结论②,可以得到一个等式
结合结论②和结论③,可以得到一个等式
(三)应用:
请你运用(二)中得到的结论任意选择下列两个问题中的一个解答:
(1)求1.462+2×1.46×2.54+2.542的值;
(2)若分别以直角三角形三边为直径,向外作半圆(如图4),三个半圆的面积分别记作S1、S2、S3,且S1+S2+S3=20,求S2的值.
(四)延伸(本题作为附加题,做对加2分)
若分别以直角三角形三边为直径,向上作三个半圆(如图5),直角边a=5,b=12,斜边c=13,则表示图中阴影部分面积和的数值是:
请作出选择,并说明理由.
查看习题详情和答案>>
(一)观察:
从整体看,图2和图3的大正方形的面积都可以表示为(a+b)2,结论①依据整个图形的面积等于各部分面积的和.
图2中的大正方形的面积又可以用含字母a、b的代数式表示为:
a2+b2+2ab
a2+b2+2ab
,结论②图3中的大正方形的面积又可以用含字母a、b、c的代数式表示为:
c2+2ab
c2+2ab
,结论③(二)思考:
结合结论①和结论②,可以得到一个等式
(a+b)2=a2+b2+2ab
(a+b)2=a2+b2+2ab
;结合结论②和结论③,可以得到一个等式
a2+b2=c2
a2+b2=c2
;(三)应用:
请你运用(二)中得到的结论任意选择下列两个问题中的一个解答:
(1)求1.462+2×1.46×2.54+2.542的值;
(2)若分别以直角三角形三边为直径,向外作半圆(如图4),三个半圆的面积分别记作S1、S2、S3,且S1+S2+S3=20,求S2的值.
(四)延伸(本题作为附加题,做对加2分)
若分别以直角三角形三边为直径,向上作三个半圆(如图5),直角边a=5,b=12,斜边c=13,则表示图中阴影部分面积和的数值是:
A
A
A.有理数 B.无理数 C.无法判断请作出选择,并说明理由.
我们运用图(I)图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×
ab,即(a+b)2=c2+4×
ab由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.
(1)请你用图(Ⅱ)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).
(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+y)2=x2+2xy+y2
(3)现有足够多的边长为x的小正方形,边长为y的大正方形以及长为x宽为y的长方形,请你自己设计图形的组合,用其面积表达式验证:(x+y)(x+2y)=x2+3xy+2y2.
查看习题详情和答案>>
| 1 |
| 2 |
| 1 |
| 2 |
(1)请你用图(Ⅱ)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).
(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+y)2=x2+2xy+y2
(3)现有足够多的边长为x的小正方形,边长为y的大正方形以及长为x宽为y的长方形,请你自己设计图形的组合,用其面积表达式验证:(x+y)(x+2y)=x2+3xy+2y2.