ÌâÄ¿ÄÚÈÝ
ÎÒÃÇÔËÓÃͼ£¨¢ñ£©Í¼ÖдóÕý·½ÐεÄÃæ»ý¿É±íʾΪ£¨a+b£©2£¬Ò²¿É±íʾΪc2+4¡Á(| 1 |
| 2 |
| 1 |
| 2 |
£¨1£©ÇëÄãÓÃͼ£¨¢ò£©£¨2002Äê¹ú¼ÊÊý×Ö¼Ò´ó»á»á±ê£©µÄÃæ»ý±í´ïʽÑéÖ¤¹´¹É¶¨Àí£¨ÆäÖÐËĸöÖ±½ÇÈý½ÇÐεĽϴóµÄÖ±½Ç±ß³¤¶¼Îªa£¬½ÏСµÄÖ±½Ç±ß³¤¶¼Îªb£¬Ð±±ß³¤¶¼Îªc£©£®
£¨2£©ÇëÄãÓ㨢ó£©ÌṩµÄͼÐνøÐÐ×éºÏ£¬ÓÃ×éºÏͼÐεÄÃæ»ý±í´ïʽÑéÖ¤£º£¨x+y£©2=x2+2xy+y2£®
·ÖÎö£º£¨1£©ÒõÓ°²¿·ÖÃæ»ýÓÉ´óÕý·½ÐÎÃæ»ý¼õȥСÕý·½ÐÎÃæ»ý£¬Ò²¿ÉÒÔÓÉËĸöÖ±½ÇÈý½ÇÐÎÃæ»ýÖ®ºÍÇó³ö£¬Á½ÕßÏàµÈ¼´¿ÉµÃÖ¤£»
£¨2£©Æ´³ÉÈçͼËùʾͼÐΣ¬¸ù¾ÝÕý·½Ðα߳¤Îªx+y£¬±íʾ³öÕý·½ÐÎÃæ»ý£¬ÔÙÓÉÁ½¸öСÕý·½ÐÎÓëÁ½¸ö¾ØÐÎÃæ»ýÖ®ºÍÇó³ö£¬¼´¿ÉÑéÖ¤£®
£¨2£©Æ´³ÉÈçͼËùʾͼÐΣ¬¸ù¾ÝÕý·½Ðα߳¤Îªx+y£¬±íʾ³öÕý·½ÐÎÃæ»ý£¬ÔÙÓÉÁ½¸öСÕý·½ÐÎÓëÁ½¸ö¾ØÐÎÃæ»ýÖ®ºÍÇó³ö£¬¼´¿ÉÑéÖ¤£®
½â´ð£º
½â£º£¨1£©SÒõÓ°=4¡Á
ab£¬SÒõÓ°=c2-£¨a-b£©2£¬
¡à4¡Á
ab=c2-£¨a-b£©2£¬¼´2ab=c2-a2+2ab-b2£¬
Ôòa2+b2=c2£»
£¨2£©ÈçͼËùʾ£¬
´óÕý·½ÐεÄÃæ»ýΪx2+y2+2xy£¬Ò²¿ÉÒÔΪ£¨x+y£©2£¬
Ôò£¨x+y£©2=x2+2xy+y2£®
| 1 |
| 2 |
¡à4¡Á
| 1 |
| 2 |
Ôòa2+b2=c2£»
£¨2£©ÈçͼËùʾ£¬
´óÕý·½ÐεÄÃæ»ýΪx2+y2+2xy£¬Ò²¿ÉÒÔΪ£¨x+y£©2£¬
Ôò£¨x+y£©2=x2+2xy+y2£®
µãÆÀ£º´ËÌ⿼²éÁËÕûʽµÄ»ìºÏÔËË㣬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿