摘要:1.重点:通过复习进一步使学生熟练利用有关概念.比例的性质.平行线分线段成比例定理及其推论.三角形一边平行线的性质和判定进行计算和证明.
网址:http://m.1010jiajiao.com/timu3_id_443807[举报]
要通过驾照考试,学开车的人就必须熟悉交通规则,也要知道当路况良好时,在干燥的路面上,使车停止前进所需的大约距离.若使车子停止前进的距离与车速之间的对应关系如下表所示.
(1)绘制使车子停止前进的距离相对于车速的图象.
(2)证明使车子停止前进的距离s(单位:m)、车速v(单位;km/h)有如下关系:
s=
v+
v2.
(3)在路况不良时,上表的停止距离需修正为45,72,105,144及189米,在这种情况下,要如何写出适当的公式?
查看习题详情和答案>>
如图1,以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4).将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA1B1C1,BC,A1B1相交于点M.
(1)求点B1的坐标与线段B1C的长;
(2)将图1中的矩形OA1B1C1沿y轴向上平移,如图2,矩形PA2B2C2是平移过程中的某一位置,BC,A2B2相交于点M1,点P运动到C点停止.设点P运动的距离为x,矩形PA2B2C2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)如图3,当点P运动到点C时,平移后的矩形为PA3B3C3.请你思考如何通过图形变换使矩形PA3B3C3与原矩形OABC重合,请简述你的做法.

查看习题详情和答案>>
(1)求点B1的坐标与线段B1C的长;
(2)将图1中的矩形OA1B1C1沿y轴向上平移,如图2,矩形PA2B2C2是平移过程中的某一位置,BC,A2B2相交于点M1,点P运动到C点停止.设点P运动的距离为x,矩形PA2B2C2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)如图3,当点P运动到点C时,平移后的矩形为PA3B3C3.请你思考如何通过图形变换使矩形PA3B3C3与原矩形OABC重合,请简述你的做法.
如图,把矩形OABC放置在直角坐标系中,OA=6,OC=8,若将矩形折叠,使点B与O重合,得
到折痕EF.
(1)可以通过 办法,使四边形AEFO变到四边形BEFC的位置(填“平移”、“旋转”或“翻转”);
(2)写出点E在坐标系中的位置即点E的坐标 ;
(3)折痕EF的长为 ;
(4)若直线l把矩形OABC的面积分成相等的两部分,则直线l必经过点 ,写出经过这点的任意一条直线的函数关系式 .
查看习题详情和答案>>
(1)可以通过
(2)写出点E在坐标系中的位置即点E的坐标
(3)折痕EF的长为
(4)若直线l把矩形OABC的面积分成相等的两部分,则直线l必经过点
(1)在x轴上找一点M,使MA+MB最小,并求出点M的坐标;
(2)在x轴上找一点N,使得△ABN为等腰三角形,并通过画图说明使△ABN为等腰三角形的点N有多少个?
某班同学“五•一”期间组织外出爬山活动,花了230元租了一辆客车,如果参加活动的同学每人交7元租车费还不够,你明白这句话的含义吗?
典例分析:
例1在公路上,我们可以看到以下几种交通标志(如图),它们有着不同的意义.如果设汽车载重量为x吨,宽度为k米,高度为h米,速度为y千米/时,请你用不等式表示下列各种标志的意义.

思路分析:由题意可知,限重、限宽、限高、限速中的“限”字的意义就是不超过,也就是“≤”的意义.这样,该题即可迎刃而解.
解:x≤5.5 k≤2 h≤3.5 y≤30
方法点拨:生活中的各种标志图、徽标等信息,现已成为考试中的一种素材,解决这类题目,需要将信息转化为数学语言,比如将“大于”“超过”“不超过”“非负数”“不大于”等等,准确“翻译”为数学符号.通过本题可以使我们认识到关注身边的数学的重要性.
例2用适当的不等式表示下列关系:
(1)x的4倍与2的和是非负数,可表示为 .
(2)育才中学七年级一班学生数不到35人,设该班学生有x人,可表示为 .
(3)人的寿命可超过120岁.设人的寿命为x岁,则可表示为 .
(4)小林家有4口人,人均住房面积不足15平方米,则小林家的总住面积y平方米可表示为 .
思路分析:(1)中的“非负数”即“≥0”的数;(2)中的“不到”即“<”的意思;(3)中的“超过”即“>”的意思;(4)中的“不足”即“<”的意思.
答案:(1)4x+2≥0 (2)x<35 (3)x>120 (4)y<60
方法点拨:做这种类型的题时,要善于把实际问题中的一些“不到”“大于”“超过”“不小于”等数学术语,准确迅速地转化为数学符号.此类题是为学生以后列不等式解应用题做铺垫的,所以必须掌握好. 查看习题详情和答案>>
典例分析:
例1在公路上,我们可以看到以下几种交通标志(如图),它们有着不同的意义.如果设汽车载重量为x吨,宽度为k米,高度为h米,速度为y千米/时,请你用不等式表示下列各种标志的意义.
思路分析:由题意可知,限重、限宽、限高、限速中的“限”字的意义就是不超过,也就是“≤”的意义.这样,该题即可迎刃而解.
解:x≤5.5 k≤2 h≤3.5 y≤30
方法点拨:生活中的各种标志图、徽标等信息,现已成为考试中的一种素材,解决这类题目,需要将信息转化为数学语言,比如将“大于”“超过”“不超过”“非负数”“不大于”等等,准确“翻译”为数学符号.通过本题可以使我们认识到关注身边的数学的重要性.
例2用适当的不等式表示下列关系:
(1)x的4倍与2的和是非负数,可表示为
(2)育才中学七年级一班学生数不到35人,设该班学生有x人,可表示为
(3)人的寿命可超过120岁.设人的寿命为x岁,则可表示为
(4)小林家有4口人,人均住房面积不足15平方米,则小林家的总住面积y平方米可表示为
思路分析:(1)中的“非负数”即“≥0”的数;(2)中的“不到”即“<”的意思;(3)中的“超过”即“>”的意思;(4)中的“不足”即“<”的意思.
答案:(1)4x+2≥0 (2)x<35 (3)x>120 (4)y<60
方法点拨:做这种类型的题时,要善于把实际问题中的一些“不到”“大于”“超过”“不小于”等数学术语,准确迅速地转化为数学符号.此类题是为学生以后列不等式解应用题做铺垫的,所以必须掌握好. 查看习题详情和答案>>