摘要:12.已知∠E=∠F.∠1=∠2.AB=CD.问AE=DF吗?说明理由.
网址:http://m.1010jiajiao.com/timu3_id_443607[举报]
阅读下面的解题过程,然后解答后面的问题.
题目:如图(1),已知正方形ABCD中,点M是AB的中点,点E是AB延长线上的一点,MN⊥DM交∠CBE的平分线BN于点N.试说明MD=MN.
解:在AD上取一点F,使AF=AM,连结MF.
因为ABCD是正方形,
所以DF=MB,∠1+∠AMD=90°.
因为DM⊥MN,
所以∠AMD+∠2=90°.
所以∠1=∠2.
因为BN平分∠CBE,
所以∠MBN=135°=∠DFM.
所以△DFM≌△MBN.
所以DM=MN.
(1)在上述说理过程中,“点M是AB的中点”这个条件没有用到,若将这个条件改为“点M是AB上的任意一点”,或“点M是AB延长线上的任意一点”,或“点M是BA延长线上的任意一点”,则结论“DM=MN”还成立吗?请说明理由;
(2)如图(2),在正三角形ABC中,若AE=CD,则∠BFE=60°;如图(3),在正方形ABCD中,若DE=CF,则∠AGF=90°.这里的两个结论“∠BFE=60°”和“∠AGF=90,分别与题目的背景条件“正三角形ABC”和“正方形ABCD”有关.你能否改编一道题目,改变上述题目的背景“正方形ABCD”,并相应改变条件“MN⊥DM”,而其余条件与结论不变?请说明所编题目的正确性.
先阅读下面(1)题的解答过程,然后解答第(2)题
(1)已知,如图(1)所示,△ABC中,D、E分别是边AB、AC上的中点,连结DE。试说明DE与BC的关系。
解:DE与BC的关系为DE∥BC且DE=
BC。
理由如下:
将△ADE绕点D旋转180°到△BDF位置
根据旋转的特征,有F、D、E三点在同一直线上
∴DF=DE,BF=AE,且BF∥AE,
∴∠1=∠A,∠F=∠2
∵AE=EC
∴BF=EC
由于一组对边平行且相等的四边形为平行四边形
∴四边形FBCE是平行四边形
∴FE∥BC且FE=BC
即DE∥BC,DE=
BC。
(2)已知:如图(2)所示,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,连结EF,试问你能根据(1)题的结论,说明EF∥BC,且EF=
(AD+BC)吗?
查看习题详情和答案>>
解:DE与BC的关系为DE∥BC且DE=
理由如下:
将△ADE绕点D旋转180°到△BDF位置
根据旋转的特征,有F、D、E三点在同一直线上
∴DF=DE,BF=AE,且BF∥AE,
∴∠1=∠A,∠F=∠2
∵AE=EC
∴BF=EC
由于一组对边平行且相等的四边形为平行四边形
∴四边形FBCE是平行四边形
∴FE∥BC且FE=BC
即DE∥BC,DE=
(2)已知:如图(2)所示,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,连结EF,试问你能根据(1)题的结论,说明EF∥BC,且EF=