网址:http://m.1010jiajiao.com/timu3_id_441272[举报]
(本题满分10分)
情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是 ▲ ,∠CAC′= ▲ °.
问题探究
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分
别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等
腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为
P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,并说明理由.
查看习题详情和答案>>
(本题满分10分)
情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是 ▲ ,∠CAC′= ▲ °.
问题探究
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分
别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等
腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为
P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,并说明理由.
查看习题详情和答案>>
在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:
第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2)
请解答以下问题:
小题1:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论.
小题2:(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?