题目内容

(本题满分10分)

情境观察

将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是  ▲   ,∠CAC′=  ▲   °.

 

 

 

 

 

 


问题探究

如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分

别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等

腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为

P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.

 

拓展延伸

如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,并说明理由.

 

见解析

解析:

情境观察

AD(或A′D),90 ------------------------------------------2分

问题探究

结论:EP=FQ. 

证明:∵△ABE是等腰三角形,∴AB=AE,∠BAE=90°.

∴∠BAG+∠EAP=90°.∵AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.

∵EP⊥AG,∴∠AGB=∠EPA=90°,∴Rt△ABG≌Rt△EAP. ∴AG=EP.

同理AG=FQ.  ∴EP=FQ.-----------------------------------6分

拓展延伸

结论: HE=HF. ------------------------------------------7分

理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.

∵四边形ABME是矩形,∴∠BAE=90°,

∴∠BAG+∠EAP=90°.AG⊥BC,∴∠BAG+∠ABG=90°,

∴∠ABG=∠EAP.

∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴ = .

同理△ACG∽△FAQ,∴ = .

∵AB= k AE,AC= k AF,∴ = = k,∴ = . ∴EP=FQ.

∵∠EHP=∠FHQ,∴Rt△EPH≌Rt△FQH. ∴HE=HF ------------10分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网