摘要:如图,抛物线y=ax2+bx+c(a≠0)的图像与x轴的一个交点是.下列说法中不正确的是( ) A.抛物线的对称轴是x=1 B.抛物线的开口向下 C.抛物线与x轴的另一个交点是(2.0) D.当x=1时.y有最大值是3
网址:http://m.1010jiajiao.com/timu3_id_440802[举报]
如图,抛物线y=ax2+bx-3与x轴交于两点A(1,0)、B(3,0),与y轴交于点D.
(1)求抛物线的解析式;
(2)在抛物线是否存在一点P,使得△BDP是以BD为斜边的直角三角形,若存在,请求出点P的坐标;若不存在,请说明理由;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由. 查看习题详情和答案>>
(1)求抛物线的解析式;
(2)在抛物线是否存在一点P,使得△BDP是以BD为斜边的直角三角形,若存在,请求出点P的坐标;若不存在,请说明理由;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由. 查看习题详情和答案>>
如图,抛物线y=ax2-4ax+c交x轴于A、B两点,交y轴于C点,点D(4,-3)在抛物
线上,且四边形ABDC的面积为18.
(1)求抛物线的函数关系式;
(2)若正比例函数y=kx的图象将四边形ABDC的面积分为1:2的两部分,求k的值;
(3)将△AOC沿x轴翻折得到△AOC′,问:是否存在这样的点P,以P为位似中心,将△AOC′放大为原来的两倍后得到△EPG(即△EPG∽△AOC′,且相似比为2),使得点E、G恰好在抛物线上?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. 查看习题详情和答案>>
(1)求抛物线的函数关系式;
(2)若正比例函数y=kx的图象将四边形ABDC的面积分为1:2的两部分,求k的值;
(3)将△AOC沿x轴翻折得到△AOC′,问:是否存在这样的点P,以P为位似中心,将△AOC′放大为原来的两倍后得到△EPG(即△EPG∽△AOC′,且相似比为2),使得点E、G恰好在抛物线上?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. 查看习题详情和答案>>
(1)写出抛物线的解析式
(2)点Q是抛物线上的一点,且使△CPQ的面积等于△CMP的面积,则所有满足条件的点Q的个数为: