摘要:24. 已知二次函数y=ax2+bx+c的部分对应值如下表.求这个函数的解析式.并写出其图像的顶点坐标和对称轴. x ―2 ―1 0 1 2 3 y 0 ―2 ―2 0 4 10
网址:http://m.1010jiajiao.com/timu3_id_440205[举报]
(本小题满分5分)
已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移多少个单位? 查看习题详情和答案>>
已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移多少个单位? 查看习题详情和答案>>
(本小题满分5分)
已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移多少个单位?
(本题满分12分)
问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为
.
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数
的图象性质.
① 填写下表,画出函数的图象:
| x | … |
|
|
| 1 | 2 | 3 | 4 | … |
| y | … |
|
|
|
|
|
|
| … |
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数
(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.
![]()
查看习题详情和答案>>
(本题满分12分)
问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为
.
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数
的图象性质.
① 填写下表,画出函数的图象:
| x | … |
|
|
| 1 | 2 | 3 | 4 | … |
| y | … |
|
|
|
|
|
|
| … |
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数
(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.
查看习题详情和答案>>
(本题满分12分)
问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为
.
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数
的图象性质.
① 填写下表,画出函数的图象:
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数
(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.
查看习题详情和答案>>
问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数
① 填写下表,画出函数的图象:
| x | … | 1 | 2 | 3 | 4 | … | |||
| y | … | | | | | | | | … |
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.