题目内容

(本题满分12分)

问题情境

已知矩形的面积为aa为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型

设该矩形的长为x,周长为y,则yx的函数关系式为

探索研究

⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

①      填写下表,画出函数的图象:

x

1

2

3

4

y

 

 

 

 

 

 

 

 

②观察图象,写出该函数两条不同类型的性质;

③在求二次函数y=ax2bxca≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.

解决问题

⑵用上述方法解决“问题情境”中的问题,直接写出答案.

 

解⑴①,2,.                     (2分)

函数的图象如图.                      (5分)

②本题答案不唯一,下列解法供参考.

时,增大而减小;当时,增大而增大;当时函数的最小值为2.                           (7分)

=

=

=

=0,即时,函数的最小值为2.(10分)

⑵当该矩形的长为时,它的周长最小,最小值为.      (12分)

 

解析:略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网