题目内容

(本题满分12分)
问题情境
已知矩形的面积为aa为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则yx的函数关系式为
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
① 填写下表,画出函数的图象:
x




1
2
3
4

y

 
 
 
 
 
 
 

②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2bxca≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.
见解析解析:
⑴①,2,.                     (2分)
函数的图象如图.                      (5分)

②本题答案不唯一,下列解法供参考.
时,增大而减小;当时,增大而增大;当时函数的最小值为2.                           (7分)

=
=
=
=0,即时,函数的最小值为2.(10分)
⑵当该矩形的长为时,它的周长最小,最小值为.      (12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网