摘要: 如图.AB与圆O相切于点C.OA=OB.圆O的直径为8.AB=10.求OA的长
网址:http://m.1010jiajiao.com/timu3_id_438814[举报]
如图,菱形OABC的顶点O在坐标原点,顶点B在x轴的正半轴上,OA边在直线y=
x上,AB边在直线y=-
x+2上.
(1)直接写出O、A、B、C的坐标;
(2)在OB上有一动点P,以O为圆心,OP为半径画弧MN,分别交边OA、OC于M、N(M、N可以与A、C重合),作⊙Q与边AB、BC,弧MN都相切,⊙Q分别与边AB、BC相切于点D、E,设⊙Q的半径为r,OP的长为y,求y与r之间的函数关系式,并写出自变量r的取值范围;
(3)以O为圆心、OA为半径做扇形OAC,请问在菱形OABC中,除去扇形OAC后剩余部分内,是否可以截下一个圆,使得它与扇形OAC刚好围成一个圆锥.若可以,求出这个圆的面积,若不可以,说明理由.
查看习题详情和答案>>
| ||
| 3 |
| ||
| 3 |
(1)直接写出O、A、B、C的坐标;
(2)在OB上有一动点P,以O为圆心,OP为半径画弧MN,分别交边OA、OC于M、N(M、N可以与A、C重合),作⊙Q与边AB、BC,弧MN都相切,⊙Q分别与边AB、BC相切于点D、E,设⊙Q的半径为r,OP的长为y,求y与r之间的函数关系式,并写出自变量r的取值范围;
(3)以O为圆心、OA为半径做扇形OAC,请问在菱形OABC中,除去扇形OAC后剩余部分内,是否可以截下一个圆,使得它与扇形OAC刚好围成一个圆锥.若可以,求出这个圆的面积,若不可以,说明理由.
如图,在平面直角坐标系中,以(1,0)为圆心的⊙
P与y轴相切于原点O,过点A(-1,0)的直线AB与⊙P相切于点B.
(1)求AB的长;
(2)求AB、OA与
所围成的阴影部分面积(不取近似值);
(3)求直线AB的解析式;
(4)直线AB上是否存在点M,使OM+PM的值最小?如果存在,请求出点M的坐标;如果不存在,请说理. 查看习题详情和答案>>
(1)求AB的长;
(2)求AB、OA与
| OB |
(3)求直线AB的解析式;
(4)直线AB上是否存在点M,使OM+PM的值最小?如果存在,请求出点M的坐标;如果不存在,请说理. 查看习题详情和答案>>
如图,⊙O的半径为12cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以2πcm/s的速
度沿圆周逆时针运动,当点P回到点A就停止运动.当点P运动的时间为 s时,BP与⊙O相切.
查看习题详情和答案>>