摘要:2]P +[ 5 ]CuSO4+[ 8 ]H2O===[ 5 ]Cu+[ 2 ]H3PO4+[ 5 ]H2SO4 其中还原剂是 P .还原产物是 Cu . ⑵白磷也可与热的CuSO4溶液反应.其化学方程式为:
网址:http://m.1010jiajiao.com/timu3_id_371970[举报]
[化学-物质结构与性质]
研究物质结构是为更好的掌握物质的性质.
(1)第四周期过渡元素在性质上存在一些特殊性,在前沿科技中应用广泛.
①铜为第四周期过渡元素,其基态原子电子排布式为
②金属镍粉在CO气流中轻微加热,生成液态Ni(CO)4分子.423K时,Ni(CO)4分解为Ni和CO,从而制得高纯度的Ni粉.试推测Ni(CO)4易溶于下列
a.水 b.四氯化碳 c.苯 d.硫酸镍溶液
③在硫酸铜溶液中通入过量的氨气,小心蒸发,最终得到深蓝色的[Cu(NH3)4]SO4晶体,晶体中含有的化学键除普通共价键外,还有
(2)已知:下表是14种元素的电负性的数值(用X表示).
①经验规律告诉我们:当形成化学键的两原子相应元素的X差值大于1.7时,所形成的一般为离子键,如NaCl;当小于1.7时,一般为共价键,如AlCl3.请写出铁元素和表中非金属元素形成的常见共价化合物:
②气态氯化铝通常以二聚分子形式存在,分子式为Al2Cl6,分子中所有原子均达到8电子稳定结构,则Al2Cl6的结构式为
.
③由表中两种元素形成的化合物中,分子中既含有σ键又含有π键,且二者数目相同的有(写一个即可)
查看习题详情和答案>>
研究物质结构是为更好的掌握物质的性质.
(1)第四周期过渡元素在性质上存在一些特殊性,在前沿科技中应用广泛.
①铜为第四周期过渡元素,其基态原子电子排布式为
[Ar]3d104s1
[Ar]3d104s1
,请解释金属铜能导电的原因铜是由自由电子和金属阳离子通过金属键形成,自由电子在外电场中可以定向移动,所以能导电.
铜是由自由电子和金属阳离子通过金属键形成,自由电子在外电场中可以定向移动,所以能导电.
.②金属镍粉在CO气流中轻微加热,生成液态Ni(CO)4分子.423K时,Ni(CO)4分解为Ni和CO,从而制得高纯度的Ni粉.试推测Ni(CO)4易溶于下列
bc
bc
.a.水 b.四氯化碳 c.苯 d.硫酸镍溶液
③在硫酸铜溶液中通入过量的氨气,小心蒸发,最终得到深蓝色的[Cu(NH3)4]SO4晶体,晶体中含有的化学键除普通共价键外,还有
离子键、配位键
离子键、配位键
.(2)已知:下表是14种元素的电负性的数值(用X表示).
| 元素 | Al | B | Be | C | Cl | F | Li |
| X | 1.5 | 2.0 | 1.5 | 2.5 | 2.8 | 4.0 | 1.0 |
| 元素 | Mg | Na | O | P | S | Si | Fe |
| X | 1.2 | 0.9 | 3.5 | 2.1 | 2.5 | 1.7 | 1.8 |
FeCl3或FeS
FeCl3或FeS
.②气态氯化铝通常以二聚分子形式存在,分子式为Al2Cl6,分子中所有原子均达到8电子稳定结构,则Al2Cl6的结构式为
③由表中两种元素形成的化合物中,分子中既含有σ键又含有π键,且二者数目相同的有(写一个即可)
CO2或CS2
CO2或CS2
,其分子空间构型为直线型
直线型
.Q、R、X、Y、Z五种元素的原子序数依次递增.已知:①Z的原子序数为29,其余的均为短周期主族元素;②Y原子价电子(外围电子)排布msnmpn③R原子核外L层电子数为奇数; ④Q、X原子p轨道的电子数分别为2和4.
请回答下列问题
(1)Z2+的核外电子排布式是
(2)Q与Y形成的最简单气态氢化物分别为甲、乙,下列判断正确的是
a.稳定性:甲>乙,沸点:甲>乙 b.稳定性:甲>乙,沸点:甲<乙
c.稳定性:甲<乙,沸点:甲<乙 d.稳定性:甲<乙,沸点:甲>乙
(3)Q、R、Y三种元素的第一电离能数值由小到大的顺序为
(4)Q的一种氢化物相对分子质量为26,其中分子中的σ键与π键的键数之比为
(5)五种元素中,电负性最大与最小的两种非金属元素形成的晶体属于
查看习题详情和答案>>
请回答下列问题
(1)Z2+的核外电子排布式是
1s22s22p63s23p63d9
1s22s22p63s23p63d9
.(2)Q与Y形成的最简单气态氢化物分别为甲、乙,下列判断正确的是
b
b
.a.稳定性:甲>乙,沸点:甲>乙 b.稳定性:甲>乙,沸点:甲<乙
c.稳定性:甲<乙,沸点:甲<乙 d.稳定性:甲<乙,沸点:甲>乙
(3)Q、R、Y三种元素的第一电离能数值由小到大的顺序为
Si<C<N
Si<C<N
(用元素符号作答)(4)Q的一种氢化物相对分子质量为26,其中分子中的σ键与π键的键数之比为
3:2
3:2
.(5)五种元素中,电负性最大与最小的两种非金属元素形成的晶体属于
原子晶体
原子晶体
.(1)将1.0mol CH4和2.0mol H2O(g)通入反应室(容积为100L),在一定条件下发生反应:CH4(g)+H2O(g)?CO(g)+3H2(g)…I.CH4的转化率与温度、压强的关系如图.
①已知100℃时达到平衡所需的时间为5min,则用H2表示的平均反应速率为
0.003mol/(L?min)
0.003mol/(L?min)
.②图中的P1
<
<
P2(填“<”、“>”或“=”),100℃时平衡常数为2.25×10-4
2.25×10-4
.③该反应的△H
>
>
0(填“<”、“>”或“=”).(2)在压强为0.1MPa条件下,将a mol CO与3amol H2的混合气体在催化剂作用下能自发反应生成甲醇:CO(g)+2H2(g)?CH3OH(g)△H<0
Ⅱ.
①若容器容积不变,下列措施可增加甲醇产率的是
BD
BD
.A.升高温度 B.将CH3OH(g)从体系中分离
C.充入He,使体系总压强增大 D.再充入1mol CO和3mol H2
②为了寻找合成甲醇的温度和压强的适宜条件,某同学设计了三组实验,部分实验条件已经填在下面实验设计表中.
| 实验编号 | T(℃) | n(CO)/n(H2) | p(MPa) | ||
| l | 150 |
|
0.1 | ||
| 2 | n |
|
5 | ||
| 3 | 350 | m | 5 |
150
150
、b=| 1 |
| 3 |
| 1 |
| 3 |
B.根据反应Ⅱ的特点,右上图是在压强分别为0.1MPa和5MPa下CO的转化率随温度变化的曲线图,请指明图中的压强Px=
0.1
0.1
MPa.反应I CO(g)+2H2(g)?CH3OH(g)△H
反应Ⅱ2CO(g)+4H2(g)?CH3CH2OH(g)+H2O△H.
某研究小组为了寻找合成甲醇的适宜条件如温度、压强、碳氢比[
| n(CO) |
| n(H2) |
| 实验序号 | T(℃) |
|
p(Mpa) | CO(转化率) | ||
| 1 | 150 |
|
0.1 | a | ||
| 2 | x |
|
5 | b |
压强
压强
对合成甲醇的影响,则x=150
150
.(2)a
<
<
b(填“>”、“<”或“=”).(3)若要探究温度、压强、碳氢比[
| n(CO) |
| n(H2) |
3
3
次对比实验.(4)上述合成甲醇、乙醇的两个反应更符合绿色化学理念的是反应
Ⅰ
Ⅰ
(填编号).(5)在不同时间测得反应Ⅱ的混合体系中CH3CH2OH的百分含量和温度的关系如图所示.
①反应Ⅱ的△H
<
<
0(填“>”或“<”).②判断ω点
不是
不是
(填“是”或“不是”)平衡状态.保持温度正不变,若反应进行到状态W时,v正>
>
v逆(填“<”、“>”或“=”).