摘要:18.如图17-1所示.A.B是静止在水平地面上完全相同的两块长木板.A的左端和B的右端相接触.两板的质量皆为M=2.0kg.长度皆为L=1.0m.C是质量为m=1.0kg的小物块.现给它一初速度v0=2.0m/s.使它从板B的左端向右滑动.已知地面是光滑的.而C与板A.B之间的动摩擦因数皆为μ=0.10.求最后A.B.C各以多大的速度做匀速运动.取重力加速度g=10m/s2. 参考解答 先假设小物块C在木板B上移动x距离后.停在B上.这时A.B.C三者的速度相等.设为v.由动量守恒得 mv0=v. ① 在此过程中.木板B的位移为s.小物块C的位移为s+x.由功能关系得 -μmgmv2-(1/2)mv02. μmgs=2Mv2/2. 则 -μmgx=v2-(1/2)mv02.② 由①.②式.得 x=[mv02/μg]. ③ 代入数值得 x=1.6m. ④ x比B板的长度大.这说明小物块C不会停在B板上.而要滑到A板上.设C刚滑到A板上的速度为v1.此时A.B板的速度为v2.则由动量守恒得 mv0=mv1+2Mv2. ⑤ 由功能关系.得(1/2)mv02-(1/2)mv12-2×(1/2)mv22=μmgL. 以题给数据代入.得 由v1必是正值.故合理的解是 当滑到A之后.B即以v2=0.155m/s做匀速运动.而C是以v1=1.38m/s的初速在A上向右运动.设在A上移动了y距离后停止在A上.此时C和A的速度为v3.由动量守恒得 Mv2+mv1=(m+M)v3. 解得 v3=0.563m/s. 由功能关系得 1/2)mv12+(1/2)mv22-v32=μmgy. 解得 y=0.50m. y比A板的长度小.所以小物块C确实是停在A板上.最后A.B.C的速度分别为vA=v3=0.563m/s.vB=v2=0.155m/s.vC=vA=0.563m/s. 评分标准 本题的题型是常见的碰撞类型.考查的知识点涉及动量守恒定律与动能关系或动力学和运动学等重点知识的综合.能较好地考查学生对这些重点知识的掌握和灵活运动的熟练程度.题给数据的设置不够合理.使运算较复杂.影响了学生的得分.从评分标准中可以看出.论证占的分值超过本题分值的50%.足见对论证的重视.而大部分学生在解题时恰恰不注重这一点.平时解题时不规范.运算能力差等.都是本题失分的主要原因.

网址:http://m.1010jiajiao.com/timu3_id_1371097[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网