第五章  平面向量

一.向量的相关概念

1.向量的定义:                                叫做向量。

2.向量的模(长度):

①设 , 则=             

②若表示向量的起点和终点的坐标分别为,则

=___________________      =            

3.零向量:                                   叫做零向量;

4.单位向量:                                 叫做单位向量;

5.共线(平行)向量:                           叫做共线向量;

 

6.相等向量:                                 叫做相等向量;

7.相反向量:                                 叫做相反向量.

二. 向量的运算:

运     算

定义(法则)

坐标运算

加  法  运  算

 

 

 

 

减  法  运  算

 

 

 

 

实数与向量的积

 

 

 

 

平面向量的数量积

 

 

 

 

 

三3三三  .平面向量的基本定理:

1.如果向量不共线,则同一平面内的任一向量=____________________________,

其中称为________________

2.向量______________      _______________

其中是沿轴,轴正向的单位向量。

4.3.两个向量平行和垂直的充要条件:

                                        

                                       

的夹角                

四.定比分点公式

1. 线段的定比分点定义

试题详情

设点分向量所成的定比为

试题详情

如何定义:

试题详情

的符号如何确定:

试题详情

的大小如何确定:

试题详情

2.线段的定比分点坐标公式:

试题详情

①设,且,则

 

试题详情

______________          ________________

试题详情

时,得中点坐标公式:

试题详情

 ③点的重心,且,则

 

试题详情

__________________      ___________________

五. 平移

试题详情

1.点平移到,则

试题详情

  ________________        _________________

试题详情

2.向量按向量平移后的向量坐标是_____________

试题详情

3.按向量平移后得_____________________

六. 解斜三角形

试题详情

1.正弦定理:         =          =           

试题详情

2.余弦定理:

试题详情

试题详情

3.常用的三角形面积公式(至少写出三个)

 

 

 

 

试题详情

4.已知,解三角形的各种情况

试题详情

                   三角形_______

试题详情

  若                   三角形_______

试题详情

  若               三角形_______

试题详情

  若                       三角形_______

试题详情

5.在三角形中常用的几个向量结论

试题详情

①在中,的___________

试题详情

②在中,点的垂心___________________________________________

试题详情

③在中,_____________________________

 

试题详情