19. 解:(1)延长B1E交BC于F, ∵ΔB1EC∽ΔFEB, BE=EC1
∴BF=B1C1=BC,从而F为BC的中点.
∵G为ΔABC的重心,∴A、G、F三点共线,且= =,∴GE∥AB1,
又GE侧面AA1B1B,
∴GE∥侧面AA1B1B
(2)在侧面AA1B1B内,过B1作B1H⊥AB,垂足为H,∵侧面AA1B1B⊥底面ABC,
∴B1H⊥底面ABC.又侧棱AA1与底面ABC成600的角, AA1= 2,
∴∠B1BH=600,BH=1,B1H=.
在底面ABC内,过H作HT⊥AF,垂足为T,连B1T.由三垂线定理有B1T⊥AF,
又平面B1GE与底面ABC的交线为AF,∴∠B1TH为所求二面角的平面角.
∴AH=AB+BH=3,∠HAT=300, ∴HT=AHsin300=,
在RtΔB1HT中,tan∠B1TH== ,
从而平面B1GE与底面ABC所成锐二面角的大小为arctan