搜索
精英家教网
>
试卷
>
高考数学立体几何基本概念测试
> 题目详情
网址:http://m.1010jiajiao.com/paper/timu/5154828.html
[举报]
12.球的半径是R,则
其体积
,其表面积
.
题目来源:
高考数学立体几何基本概念测试
试卷相关题目
7.三余弦定理 设AC是α内的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为,AB与AC所成的角为,AO与AC所成的角为.则.
8. 长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则有 . (长方体对角线长的公式是特例.
9. 面积射影定理 .(平面多边形及其射影的面积分别是、,它们所在平面所成锐二面角的为).
10. 斜棱柱的直截面 已知斜棱柱的侧棱长是,侧面积和体积分别是和,它的直截面的周长和面积分别是和,则 ①.②.
11.棱锥的平行截面的性质 如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.
13.球的组合体 (1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体: 正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体: 棱长为的正四面体的内切球的半径为, 外接球的半径为.
14.柱体、锥体的体积 (是柱体的底面积、是柱体的高). (是锥体的底面积、是锥体的高).
15.经纬度及球面距离 ⑴根据经线和纬线的意义可知,某地的经度是一个二面角度数,某地的纬度是一个线面角度数, ⑵两点间的球面距离就是连结球面上两点的大圆的劣弧的长,因此,求两点间的球面距离的关键就在于求出过这两点的球半径的夹角。
16.二面角的求法 (1)定义法:直接在二面角的棱上取一点,分别在两个半平面内作棱的垂线,得出平面角,; (2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; (3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直; (4)射影法:利用面积射影公式S射=S原cos,其中为平面角的大小,此方法不必在图形中画出平面角; 特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。 17直线和平面所成的角: (1)定义:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。 (2)范围:;(3)求法:作出直线在平面上的射影;(4)斜线与平面所成的角的特征:斜线与平面中所有直线所成角中最小的角。
18.空间距离的求法 (1)两异面直线间的距离,高考要求是给出公垂线,一般利用垂直作出公垂线,然后再进行计算; (2)求点到直线的距离,一般用三垂线定理作出垂线再求解; (3)求点到平面的距离, 一是用垂面法,借助面面垂直的性质来作,因此,确定已知面的垂面是关键; 二是不作出公垂线,转化为求三棱锥的高,利用等体积法列方程求解;
关 闭
试题分类
高中
语文
数学
英语
物理
化学
生物
政治
历史
地理
初中
语文
数学
英语
物理
化学
生物
政治
历史
地理
小学
语文
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总