高考数学冲刺预测试卷 本卷满分:150分    试卷用时:120分钟 本试卷分第Ⅰ卷(选择题) 和第Ⅱ卷(非选择题) 两部分。共150分。考试时间120分钟。 球的表面积公式  其中R表示球的半径 球的体积公式  其中R表示球的半径   参考公式: 如果事件A、B互斥,那么 P(A+B)=P(A)+P(B) 如果事件A、B相互独立,那么 P(A.B)=
  • 1.已知集合,则p是q的  (   )

    A.充分条件,但不是必要条件   B.必要条件,但不是充要条件

    C.充分必要条件         D.既不是充分条件,也不是必要条件

  • 2.(理) z∈C,若|z|-=2-4i,则的值是(   )

    A.1         B.-1         C.i           D.- i

    (文) 若,则用a表示sin40°的结果为  (   )

    A.             B.       C.       D.

  • 3.已知直线及平面,则的位置关系为    (   )

    A.相交,不垂直              B.

    C.                          D.以上三种情况都有可能

  • 4.若偶函数y=f(x)(R)满足f(x+2)= f(x),且x∈(-1,0)时,,则函数y=f(x)的图象与函数图象的交点的个数为  (   )

    A.3        B.4         C.6          D.8

  • 5.从单词“exclaim”中选取5个不同的字母排成一排,则含“ex”(“ex”相连且顺序不变)的概率为(   )

    A.   B.   C.   D.

  • 6.f’(x)是f(x)的导函数,f’(x)的图象如图所示,则f(x)的图象只可能是(   )

    A         B           C         D

  • 7.路灯距地平面为8m,一个身高为1.75m的人以80m/min的速率从路灯在地面上的射影点C处,沿某直线离开路灯,那么人影长度的变化速率为v为(   )

    A.     B.       C.      D.

  • 8.已知点P(xy)的坐标满足,设A(6,0),则(O为坐标原点)的最大值为(   )

    A.3                         B.5                            C.4                            D.1

  • 9.过底面边长为1的正三棱锥的一条侧棱和高作截面,如果这个截面的面积为,那么这个棱锥的侧面与底面所成角的正切值为 (   )

    A.1                         B.2                            C.4                            D.

  • 10.双曲线的一个焦点为F,点P在双曲线上,且(O为坐标原点),则△OPF的面积S=(   )

    A.1                         B.                          C.4                            D.

    第Ⅱ卷(非选择题,共90分)

  • 11.如图,正方体ABCD-A1B1C1D1的棱长为1,点M在A上,且AM=AB,点P在平面ABCD上,且动点P到直线A1D1的距离的平方与P到点M的距离的平方差为1,在平面直角坐标系xAy中,动点P的轨迹方程是          

  • 12.在△ABC中,内角A满足,且,则A的取值范围是_________。

  • 13.已知函数f(x)=|x2-2ax+b|(x∈R)。给出下列命题:

    f(x)必是偶函数;

    ②当f(0)=f(2)时,f(x)的图象必关于直线x=1对称;

    ③若a2b≤0,则f(x)在区间[a,+∞]上是增函数;

    f(x)有最大值|a2b|。

    f(x)有最小值0。

    其中正确命题的序号是_________。

  • 14.一烷烃起始物的分子结构式是,将其中的所有氢原子用甲基取代得到:,再将其中的12个氢原子全部用甲基代换,如此循环以至无穷,球形烷烃分子由小到大成一系列,则在这个系列中,由小到大第n个分子中含有的碳原子的个数是_______。

  • 15.(文)已知(其中,且),设,函数,在x=1处有极限,则实数a的值是    

    (理)已知(其中,且),设,函数,在x=1处连续,则实数a的值是    

  • 16.(本小题满分12分)

    已知三次函数单调递增。

    (1)求实数a的取值范围。

    (2)设向量(-sinx,2),(-2sinx),(cos2x,1),(1,2),当[0,]时,求不等式f(a.b)>f(c.d)的解集.

  • 17.(本小题满分12分)

    如图,直三棱柱ABC-A’B’C’中,CB⊥平面ABB’A’,点E是棱BC的中点,AB=BC=AA’。

    (I)求证直线CA’//平面AB’E;

    (II)(文)求二面角C-A’B’-B的大小;

    (理)求直线CA’与平面BB’C’C所成角的大小。

  • 18.(本小题满分12分)

    设椭圆的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且

    (Ⅰ)试求椭圆的方程;

    (Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值和最小值。

  • 19.(本小题满分12分)

    某大学的研究生入学考试有50人参加,其中英语与政治成绩采用5分制,设政治成绩为x,英语成绩为y,结果如下表:

    y    人数
    x
    英      语
    1分
    2分
    3分
    4分
    5分

     

    1分
    1
    3
    1
    0
    1
    2分
    1
    0
    7
    5
    1
    3分
    2
    1
    0
    9
    3
    4分
    1
    b
    6
    0
    a
    5分
    0
    0
    1
    1
    3

    (Ⅰ)求a +b的值;

    (Ⅱ)求政治成绩为4分且英语成绩为3分的概率;

    (Ⅲ)(文)若“考生的政治成绩为4分” 与“英语成绩为2分”是相互独立事件,求ab的值;

    (理)若y的数学期望为,求ab的值。

  • 20.(本小题满分13分)

    已知函数f(x)=x3+ax2+bx+c是的图象经过原点,且在x=1处取得极值,直线y=2x+5到曲线y=f(x)在原点处的切线所成的夹角为450

    (1)求f(x)的解析式;

    (2)若对于任意实数α和β恒有不等式| f(2sinα)―f(2sinβ)|≤m成立,求m的最小值;

    (3)若g(x)=xf(x)+tx2+kx+s,是否存在常数tk,使得对于任意实数sg(x)在[-3,―2]上递减,而在[-1,0]上递增,且存在x0(x0>1)使得g(x)在[1,x0]上递减?若存在,求出t+ k的取值范围;若不存在,则说明理由。

  • 21.(14分)已知等差数列{an}的首项为a,公差为b;等比数列{bn}的首项为b,公比为a,其中a,且

    (1)求a的值;

    (2)若对于任意,总存在,使,求b的值;

    (3)在(2)中,记{cn}是所有{an}中满足的项从小到大依次组成的数列,又记为{cn}的前n项和,是数列{an}的前n项和,求证:

高考数学冲刺预测试卷 本卷满分:150分    试卷用时:120分钟 本试卷分第Ⅰ卷(选择题) 和第Ⅱ卷(非选择题) 两部分。共150分。考试时间120分钟。 球的表面积公式  其中R表示球的半径 球的体积公式  其中R表示球的半径   参考公式: 如果事件A、B互斥,那么 P(A+B)=P(A)+P(B) 如果事件A、B相互独立,那么 P(A.B)=参考答案

高考数学冲刺预测试卷

参考答案

一、选择题

1.选C。=,p是q的充分必要条件。

点评:本题主要考查集合、解不等式和充要条件的知识,以及分析问题和解决问题的能力。

2.(理)选C。设z=a+bi,|z|-z=2-4i,则a=3,b=-4,∴z=3-4i.

点评:本题主要考查复数的基本概念和基本运算,这是高考的常见题型,应注意把握好难度。

(文)选B.∵,∴,即

点评:本题主要考查同角的三角函数的化简和诱导公式。

3.选D。位置不确定。

点评:本题主要考查直线与平面的位置关系,以及空间想象能力。

4.选C。函数以2为周期,画出的图象,数形结合。

点评:本题主要考查函数的周期和函数的图象,以及数形结合的思想。

5.选A。从除e和x外,还有5个不同的字母, 含“ex”的排列数是,从7个不同的字母的排列数是,故含“at”(“at”相连且顺序不变)的概率为

点评:本题主要考查古典概率问题及排列与组合的基础知识。

6.选D。由的图象可知, 斜率先增大后减小。

点评:本题主要导数与函数的综合以及函数的单调性。

7.选A。如图,路灯距地平面的距离为DC,人的身高为EB。设人从C点运动到B处路程为x米,时间为t(单位:秒),AB为人影长度,设为y,则∵BE∥CD,∴

,又80 m/min=1.4 m/s,

y=x=t(x=t)。

y′=,∴人影长度的变化速率为m/s。

点评:本题主要考查有关射影知识和平面几何的相似比。

8.选B。就是上的射影,要求其最大值,就是求点P的横坐标x的最大值,这只需作出的平面区域,即可看出x-4y+3=0与3x+5y=25的交点(5,2)就是取最大值时P点的位置。

点评:本题主要考查线形区域与平面向量的基本知识。

9.选C。设正三棱锥的高为,底面正三角形的边长为

这个棱锥的侧面与底面所成角的正切值=

点评:本题主要考查正三棱锥的有关知识和二面角的平面角的求法。

10.选D。不妨设F为右焦点,则。由于,所以点P在以原点为圆心, 为半径的圆上,即,联立消去x

点评:本题主要考查双曲线与直线、平面向量等基础知识,以及分析问题的能力。

二、填空题。

11.填。过P点作PQ⊥AD于Q,再过Q作QH⊥A1D1于H,连PH,利用三垂线定理可证PH⊥A1D1.设P(xy),

∵|PH|2 - |PH|2 = 1,∴x2 +1- [(x)2+y2] =1,化简得

点评:本题主要考查立体几何与解析几何的轨迹问题,这是高考命题的一个新趋势。

12.填()。∵,即,∴,又∵,即,∴,∴

点评:本题主要考查同角的三角函数的化简,以及两角和的正弦公式的应用,和解三角不等式。

13.填③。当a2-b≤0时,f(x)=x2-2ax+b,图象的对称轴为x=a,开口向上,③对。

点评:本题主要考查二次函数的有关性质与绝对值等知识。

14.填2×3n1-1。烷烃的通式为,设第n个分子中C原子个数为an,则an+1=an+2an+2,故an=3n1(a1+1)-1=2×3n1-1。

点评:本题主要考查数学与化学知识的综合,以及递推数列的通项的求法。

15.填2。∵,∴,又

点评:本题主要考查函数的极限以及组合的知识,以及分析问题和解决问题的能力。

三、解答题。

16.解析:(1)∵,∴

单调递增, ∴

恒成立, ∴

(2) ∵单调递增,

,∴

综上:的解集是

点评:本题主要考查导数、函数、三角函数与平面向量等知识的综合,以及分析问题和解决问题的能力.平面向量与三角函数的综合,是近几年高考考试的热点,应引起足够的重视。

17.证明:(I)∵平面PAD⊥平面ABCD,AD为交线,CD⊥AD

平面PAD

平面PAD

为正三角形,E为PD中点

平面PCD                                     6分

(II)(文)作PQ//AB且PQ=AB,连QB、QC可得AD=BC=BQ=AP=DP=CQ

平面PAD,所以

是平面PAB与平面PDC所成二面角的平面角

平面PAB与平面PDC所成二面角的大小为60°                      12分

(理)作,则F为QC中点,连PF

∴四边形AEFB是平行四边形,BF//AE

平面PDC

平面PDC

是BP与平面PDC所成的角

设PA=a,则

则由直三角形PFB可得

直线PB与平面PDC所成角的大小为。                          12分

点评:本题主要考查立体几何的有关知识,以及分析问题与解决问题的能力。本题也可以采用向量法来处理。

18.解:(Ⅰ)由题意,    …………………2分

为AF1的三等分点。       ……………………………………………3分

即椭圆方程为…………………………………………………5分

(Ⅱ)当直线DE与x轴垂直时,

此时,四边形DMEN的面积为

同理当MN与x轴垂直时,也有四边形DMEN的面积为。…6 分

当直线DE,MN均与x轴不垂直时,设DE∶,代入椭圆方程,消去

y得:

同理, ………………………8分

∴四边形的面积

,………………………………10分

,且S是以u为自变量的增函数,

综上可知,四边形DMEN面积的最大值为2,最小值为。………………12分

点评:本题主要考查解析几何的有关知识,以及分析问题与解决问题的能力。本题也可以采用向量法来处理。直线与圆锥曲线的位置关系问题是历年高考中经久不衰的重要题型,应复习到位,尤其是与平面向量的综合应引起足够的重视。

19.解:(Ⅰ)考生总人数是50,因此表中标出的总人数也应是50,所以a +b+47=50,

a +b=50-47=3;                             ………………………………4分

(Ⅱ)从表中可以看出,“政治成绩为4分且英语成绩为3分”的考生人数为6人,所以其概率为.                          ………………………………8分

(Ⅲ)(文)因为若“考生的政治成绩为4分” 与“英语成绩为2分”是相互独立事件,

所以P(x=4,y=2)= P(x=4).P(y=2),即

解得: b=1,a=2.                        …………………………………12分

(理)由已知,解得:a=1,b=2。

………………………………12分

点评:本题主要考查概率与统计的有关知识,以及分析问题与解决问题的能力。概率与统计的应用题是经几年高考应用题的热点题形,应引起足够的重视。

20.解: (1)由题意有f(0)= c=0,f(x)=3 x2+2ax+b,且f(1)= 3+2a+b=0。

又曲线y=f(x)在原点处的切线的斜率k=f(0)= b,而直线y=2x+5到它所成的夹角为45°,

∴1=tan45°= ,解得b=― 3.代入3+2a+b=0得a=0。

f(x)的解析式为f(x)=x3 3x

(2)∵对于任意实数α和β有2sinα,2sinβ∈[-2,2]。

f(x)=3x2―3=3(x―1) (x+1)可知,f(x)在(-∞,―1]和[1,+∞)上递增;在[-1,1]递减。

f(―2)= ―2,f(―1)= 2,f(1)= ―2,f(2)= 2,

f(x)在[-2,2]上的最大值和最小值分别为―2和2。

∴对于任意实数α和β恒有| f(2sinα)―f(2sinβ)|≤4。

m≥4,即m的最小值为4。

(3)∵g(x)=x(x3 3x)+tx2+kx+s= x4+(t―3)x2+kx+s,∴g(x)= 4 x3+2(t―3)x+k

∴要使g(x)在[-3,―2]上递减,而在[-1,0]上递增,且存在x0(x0>1)使得g(x)在[1,x0]上递减,只需在[-3,―2]和[1,x0]上g(x)≤0,而在[-1,0]上g(x)≥0。

h(x)= g(x),则h(x)= 12 x2+2(t―3),当t―3≥0时,h(x)在R上恒为非负,此时显然不存在这样的常数tk,∴t―3<0。

t―3<0时,g(x)在(-∞,―]和[,+∞)上递增,而在[―,―]上递减。

∴要使h(x)在[-3,―2]和[1,x0]上h(x)≤0,而在[-1,0]上h(x)≥0,只需h(―2)= ―32―4 (t―3)+k

作出可行域如图所示,由图可知,当直线t+ k= z过A点时z取得最大值5,当直线t+ k= z过B点时z取得最大值―5。

故存在这样的常数tk,其取值范围为[-5,5]。

点评:本题主要考查解析几何、导数、函数及不等式的有关知识,以及分析问题与解决问题的能力。

21.解析:(1)∵a

 ∴  ∴  ∴

a=2或a=3(a=3时不合题意,舍去).∴a=2.

(2),由可得

.∴

b=5。

(3)由(2)知, ∴

n≥3时,

综上得

点评:本题主要考查两个基本数列和不等式的有关知识,以及分析问题与解决问题的能力。解决本题第(1)小题的关键是利用条件确定的值,第(2)小题关键是利用二项式定理=>1+进行放缩得到。有关数列和不等式的综合题经常出现在高考压轴题中。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网