题目内容
【题目】如图所示,滑块的质量M=2kg,开始静止在水平面上的A点,滑块与水平面间的摩擦因数为μ=0.2,与A点相距S=2.25m的B点上方有一质量m=1.2kg的小球,小球被一长为l=0.5m的轻绳挂在O点而处于静止状态.现给滑块一瞬时冲量I=10Ns,让滑块沿水平面向右运动,此后与小球发生碰撞,碰后小球恰能在竖直平面内完成完整的圆周运动(g=10m/s2).求:
(1)滑块最终静止在距离A点多远处?
(2)因滑块与小球碰撞而损失的机械能是多少?
【答案】(1)2.5m;(2)0。
【解析】
(1)(2)在A点,给滑块瞬时冲量,由动量定理得:
滑块向前运动,与小球碰撞前,由动能定理得:
由动量守恒定律可得:
小球恰能完成圆周运动,到最高点,由牛顿第二定律知:
上摆过程,机械能守恒定律得:
滑块继续减速,由动能定理知:
碰撞时,由能的转化与守恒定律知:
联立以上各式解得:=2.5m,△E=0
练习册系列答案
相关题目