ÌâÄ¿ÄÚÈÝ
Èçͼ¼×Ëùʾ£¬Á½Æ½ÐнðÊô°å¼ä¾àΪ2l£¬¼«°å³¤¶ÈΪ4l£¬Á½¼«°å¼ä¼ÓÉÏÈçͼÒÒËùʾµÄ½»±äµçѹ£¨t=0ʱÉϼ«°å´øÕýµç£©£®ÒÔ¼«°å¼äµÄÖÐÐÄÏßOO1ΪxÖὨÁ¢×ø±êϵ£¬ÏÖÔÚƽÐаå×ó²àÈë¿ÚÕýÖв¿Óпí¶ÈΪlµÄµç×ÓÊøÒÔƽÐÐÓÚxÖáµÄ³õËÙ¶Èv0´Ót=0ʱ²»Í£µØÉäÈëÁ½°å¼ä£®ÒÑÖªµç×Ó¶¼ÄÜ´ÓÓÒ²àÁ½°å¼äÉä³ö£¬Éä³ö·½Ïò¶¼ÓëxÖáƽÐУ¬ÇÒÓеç×ÓÉä³öµÄÇøÓò¿í¶ÈΪ2l£®µç×ÓÖÊÁ¿Îªm£¬µçºÉÁ¿Îªe£¬ºöÂÔµç×ÓÖ®¼äµÄÏ໥×÷ÓÃÁ¦£®
£¨1£©Çó½»±äµçѹµÄÖÜÆÚTºÍµçѹU0µÄ´óС£»
£¨2£©Ôڵ糡ÇøÓòÍâ¼Ó´¹Ö±Ö½ÃæµÄÓнçÔÈÇ¿´Å³¡£¬¿ÉʹËùÓеç×Ó¾¹ýÓнçÔÈÇ¿´Å³¡¾ùÄÜ»á¾ÛÓÚ£¨6l£¬0£©µã£¬ÇóËù¼Ó´Å³¡´Å¸ÐӦǿ¶ÈBµÄ×î´óÖµºÍ×îСֵ£»
£¨3£©Çó´ÓOµãÉäÈëµÄµç×Ó¸Õ³ö¼«°åʱµÄ²àÏòλÒÆ£®
£¨1£©Çó½»±äµçѹµÄÖÜÆÚTºÍµçѹU0µÄ´óС£»
£¨2£©Ôڵ糡ÇøÓòÍâ¼Ó´¹Ö±Ö½ÃæµÄÓнçÔÈÇ¿´Å³¡£¬¿ÉʹËùÓеç×Ó¾¹ýÓнçÔÈÇ¿´Å³¡¾ùÄÜ»á¾ÛÓÚ£¨6l£¬0£©µã£¬ÇóËù¼Ó´Å³¡´Å¸ÐӦǿ¶ÈBµÄ×î´óÖµºÍ×îСֵ£»
£¨3£©Çó´ÓOµãÉäÈëµÄµç×Ó¸Õ³ö¼«°åʱµÄ²àÏòλÒÆ£®
£¨1£©µç×ÓÔڵ糡ÖÐˮƽ·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬
Ôò£º4l=v0nT£¬½âµÃ£ºT=
£¨n=1£¬2£¬3¡£©£¬
µç×ÓÔڵ糡ÖÐÔ˶¯×î´ó²àÏòλÒÆ£º
=2n?
a(
)2£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºa=
£¬
½âµÃ£ºU0=
£¨n=1£¬2£¬3¡£©£»
£¨2£©Á£×ÓÔ˶¯¹ì¼£ÈçͼËùʾ£º
ÓÉͼʾ¿ÉÖª£¬×î´óÇøÓòÔ²°ë¾¶Âú×㣺rm2=(2l)2+(rm-l)2£¬½âµÃ£ºrm=2.5l£¬
¶ÔÓÚ´øµçÁ£×Óµ±¹ì¼£°ë¾¶µÈÓڴų¡ÇøÓò°ë¾¶Ê±£¬´øµçÁ£×Ó½«»ã¾ÛÓÚÒ»µã£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv0Bmin=
£¬½âµÃ£ºBmin=
£¬
×îСÇøÓòÔ²°ë¾¶Îªrn=0.5l£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv0Bmax=
£¬½âµÃ£ºBmax=
£»
£¨3£©Éèʱ¼äΪ¦Ó£¬
£¾¦Ó£¾0£¬Èôt=kT+¦ÓÇÒ(
£¾¦Ó£¾0)ʱµç×Ó½øÈëµç³¡£¬
Ôò£º
£¬ÆäÖУ¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©£¬
Èôt=(k+
)T+¦ÓÇÒ(
£¾¦Ó£¾0)½øÈëµç³¡
Ôò£ºy2=-n[
aT2-aT¦Ó]=
(t-kT-
T)-
=
-
l£¬ÆäÖУ¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©£»
»ò£ºÈôµç×ÓÔÚt=kT+¦ÓÇÒ(T£¾¦Ó£¾
)½øÈëµç³¡Ê±£¬³öµç³¡µÄ×ܲàÒÆΪ£º
£¬ÆäÖУ¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©£»
ÆäËû½â·¨£ºÈôkT£¼t£¼kT+
£¬Ôò
µç×ÓÑØ+y·½ÏòµÚÒ»´Î¼ÓËÙµÄʱ¼äΪ
-(t-kT)
µç×ÓÑØ-y·½ÏòµÚÒ»´Î¼ÓËÙµÄʱ¼äΪt-kTy={
a[
-(t-kT)]2-
a(t-kT)2}?2n
½âµÃ£ºy=
naT2-naTt£¬ÆäÖÐaT2=
£¬aT=
v0£¬
¡ày=
l-
nv0t£¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©
ÈôkT+
£¼t£¼kT+T£¬Ôò
µç×ÓÑØ-y·½ÏòµÚÒ»´Î¼ÓËÙµÄʱ¼äΪT-£¨t-kT£©
µç×ÓÑØ+y·½ÏòµÚÒ»´Î¼ÓËÙµÄʱ¼äΪt-kT-
y={-
a[T-(t-kT)]2+
a(t-kT-
)2}?2n
½âµÃ£ºy=
naT2-naTt£¬ÆäÖÐaT2=
£¬aT=
v0£¬¡ày=
nv0t-
l£¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©£»
´ð£º£¨1£©½»±äµçѹµÄÖÜÆÚT=
£¨n=1£¬2£¬3¡£©£¬µçѹU0=
£¨n=1£¬2£¬3¡£©£»
£¨2£©Ëù¼Ó´Å³¡´Å¸ÐӦǿ¶ÈBµÄ×î´óÖµBmax=
£»×îСֵBmin=
£»
£¨3£©´ÓOµãÉäÈëµÄµç×Ó¸Õ³ö¼«°åʱµÄ²àÏòλÒÆΪ
-
ÆäÖУ¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©£¬»ò
-
l£¬ÆäÖУ¨n=1£¬2£¬3¡£¬k=0£¬1£¬2£¬3¡£©£®
Ôò£º4l=v0nT£¬½âµÃ£ºT=
4l |
nv0 |
µç×ÓÔڵ糡ÖÐÔ˶¯×î´ó²àÏòλÒÆ£º
l |
2 |
1 |
2 |
T |
2 |
eU0 |
2lm |
½âµÃ£ºU0=
nm
| ||
4e |
£¨2£©Á£×ÓÔ˶¯¹ì¼£ÈçͼËùʾ£º
ÓÉͼʾ¿ÉÖª£¬×î´óÇøÓòÔ²°ë¾¶Âú×㣺rm2=(2l)2+(rm-l)2£¬½âµÃ£ºrm=2.5l£¬
¶ÔÓÚ´øµçÁ£×Óµ±¹ì¼£°ë¾¶µÈÓڴų¡ÇøÓò°ë¾¶Ê±£¬´øµçÁ£×Ó½«»ã¾ÛÓÚÒ»µã£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv0Bmin=
m
| ||
rm |
2mv0 |
5el |
×îСÇøÓòÔ²°ë¾¶Îªrn=0.5l£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv0Bmax=
m
| ||
rn |
2mv0 |
el |
£¨3£©Éèʱ¼äΪ¦Ó£¬
T |
2 |
T |
2 |
Ôò£º
|
Èôt=(k+
1 |
2 |
T |
2 |
Ôò£ºy2=-n[
1 |
4 |
nv0 |
2 |
1 |
2 |
l |
2 |
nv0t |
2 |
(4k+3) |
2 |
»ò£ºÈôµç×ÓÔÚt=kT+¦ÓÇÒ(T£¾¦Ó£¾
T |
2 |
|
ÆäËû½â·¨£ºÈôkT£¼t£¼kT+
T |
2 |
µç×ÓÑØ+y·½ÏòµÚÒ»´Î¼ÓËÙµÄʱ¼äΪ
T |
2 |
µç×ÓÑØ-y·½ÏòµÚÒ»´Î¼ÓËÙµÄʱ¼äΪt-kTy={
1 |
2 |
T |
2 |
1 |
2 |
½âµÃ£ºy=
4k+1 |
4 |
2l |
n |
1 |
2 |
¡ày=
4k+1 |
2 |
1 |
2 |
ÈôkT+
T |
2 |
µç×ÓÑØ-y·½ÏòµÚÒ»´Î¼ÓËÙµÄʱ¼äΪT-£¨t-kT£©
µç×ÓÑØ+y·½ÏòµÚÒ»´Î¼ÓËÙµÄʱ¼äΪt-kT-
T |
2 |
1 |
2 |
1 |
2 |
T |
2 |
½âµÃ£ºy=
4k+1 |
4 |
2l |
n |
1 |
2 |
1 |
2 |
4k+3 |
2 |
´ð£º£¨1£©½»±äµçѹµÄÖÜÆÚT=
4l |
nv0 |
nm
| ||
4e |
£¨2£©Ëù¼Ó´Å³¡´Å¸ÐӦǿ¶ÈBµÄ×î´óÖµBmax=
2mv0 |
el |
2mv0 |
5el |
£¨3£©´ÓOµãÉäÈëµÄµç×Ó¸Õ³ö¼«°åʱµÄ²àÏòλÒÆΪ
(4k+1)l |
2 |
nv0t |
2 |
nv0t |
2 |
(4k+3) |
2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿