题目内容
【题目】如图所示,在磁感应强度为2T、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度1m/s向右匀速滑动,两导轨间距为0.5m,金属杆MN的电阻为1Ω,外电路连接的电阻R为4Ω,其他电阻不计,则通过R的电流方向和R两端的电压分别是( )
A.a→c,0.8V
B.c→a,0.8V
C.c→a,1V
D.a→c,1V
【答案】A
【解析】解:由右手定则判断可知,MN中产生的感应电流方向为N→M,则通过电阻R的电流方向为a→c.
MN产生的感应电动势公式为E=BLv=2×0.5×1=1V;
R两端的电压为:U= = =0.8V.
故A正确,BCD错误.
故选:A.
【考点精析】通过灵活运用楞次定律,掌握楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便即可以解答此题.
练习册系列答案
相关题目
【题目】为了“探究加速度与力、质量的关系”,现提供如图1所示的器材:A为小车,B为电火花计时器,C为装有沙子的小桶,D为一端带有定滑轮的长方形木板.保持小车的质量不变,改变小桶中沙子的质量(实验中认为细绳对小车拉力F等于沙子和小桶的总重力),测得小车所受绳子的拉力F和加速度a的数据如表:
F/N | 0.21 | 0.30 | 0.40 | 0.49 | 0.60 |
a/(ms﹣2) | 0.10 | 0.21 | 0.29 | 0.41 | 0.49 |
①根据测得的数据,在图2中作出a﹣F图象;
②对你作出的图象进行分析,可得出小车与长木板之间的摩擦力Ff=N.