题目内容
(19分)电偏转和磁偏转技术在科学上有着广泛的应用,如图所示的装置中,AB、CD间的区域有竖直方向的匀强电场,在CD的右侧有一与CD相切于M点的圆形有界匀强磁场,磁场方向垂直于纸面。一带电粒子自O点以水平初速度
正对P点进入该电场后,从M点飞离CD边界时速度为
,再经磁场偏转后又从N点垂直于CD边界回到电场区域,并恰能返回O点。已知OP间距离为
,粒子质量为
,电量为
,粒子自身重力忽略不计。试求:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250011556186449.png)
(1)P、M两点间的距离;
(2)返回O点时的速度大小;
(3)磁感强度的大小和有界匀强磁场区域的面积。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155524323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155540406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155555321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155571337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155602310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250011556186449.png)
(1)P、M两点间的距离;
(2)返回O点时的速度大小;
(3)磁感强度的大小和有界匀强磁场区域的面积。
(1)
(2)
(3)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155852838.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155633838.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155664608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155680988.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155852838.png)
试题分析:(1)据题意,做出带电粒子的运动轨迹如图所示:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250011558677904.png)
在M点:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155883905.png)
解得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155914675.png)
故:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250011559301223.png)
(2)由于:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155945725.png)
故由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155961500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155992962.png)
所以回到O点时:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001156008874.png)
解得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001156023692.png)
(3)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155945725.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001156070645.png)
可得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250011561011099.png)
再由几何关系:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250011561641481.png)
可得半径:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001156179770.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001156195778.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001156210693.png)
解得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155680988.png)
由几何关系确定区域半径为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001156242708.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001156257602.png)
故:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001156273579.png)
解得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825001155852838.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目