题目内容

如图所示,在光滑绝缘水平桌面上固定放置一条光滑绝缘的挡板ABCD,AB段为直线,BCD段是半径为R的圆环,设直线挡板与圆环之间用一极短的圆弧相连.整套装置处于场强为E的匀强电场中,电场方向与圆环直径CD平行.现使一带电量为+q、质量为m的小球由静止从直线挡板内侧上某点释放,为使小球沿挡板内侧运动恰能从D点通过,则小球从释放点到C点沿电场强度方向的最小距离s是
2.5R
2.5R
;小球到达D点时的速度大小是
qER
m
qER
m
分析:小球恰能从D点通过,知在D点对轨道的压力为零,靠电场力提供向心力,根据牛顿第二定律求出最小速度,从而根据动能定理求出小球从释放点到C点沿电场强度方向的最小距离
解答:解:在D点,根据牛顿第二定律得,qE=m
vD2
R
,解得vD=
qER
m

根据动能定理得,qE(s-2R)=
1
2
mvD2

解得s=2.5R.
故答案为:2.5R;
qER
m
点评:本题考查了动能定理和牛顿第二定律的综合运用,关键理清圆周运动的临界状态,求出临界速度的大小.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网