题目内容

【题目】如图所示,一质量M=2.0kg的小车(表面足够长)静止放在光滑的水平面上,将质量m=1.0kg的小物块放在小车右端,小物块与小车间的动摩擦因数为μ=0.2.小物块所受最大静摩擦力等于滑动摩擦力.

(1)当小车以1.0m/s2的加速度向右匀加速运动时,求小物块受到的摩擦力的大小;
(2)当小车以4.0m/s2的加速度向右匀加速运动时,求小车受到的水平推力的大小;
(3)当小车在12.0N水平推力作用下,从静止开始运动,经1.0后撤去水平力,小物块最终没有从小车上滑落,求小物块在小车上相对滑动的总时间.

【答案】
(1)解:当m与M恰好相对静止时,设二者的加速度大小为a0,根据牛顿第二定律可得:

μmg=ma0,解得:a0=2m/s2

当加速度a1=1.0m/s2时,m与M保持相对静止,则:

对m根据牛顿第二定律可得:f1=ma1=1×1N=1N;

答:当小车以1.0m/s2的加速度向右匀加速运动时,小物块受到的摩擦力的大小为1N;


(2)解:当小车以a2=4.0m/s2的加速度向右匀加速运动时,m与M相对滑动,以M为研究对象,根据牛顿第二定律可得:

F1﹣μmg=Ma2

解得:F1=μmg+Ma2=2N+2×4N=10N;

答:当小车以4.0m/s2的加速度向右匀加速运动时,小车受到的水平推力的大小为10N;


(3)解:当F2=12.0N时,设小车的加速度为a3,根据牛顿第二定律可得:

F2﹣μmg=Ma3

解得:a3=

而m的加速度大小仍为a0=2m/s2

在t1=1.0s时,小车的速度为:v=a3t1=5×1m/s=5m/s,

撤去力后,小车的加速度为a4=

经过t2时间两者的速度相等,则有:v﹣a4t2=a0(t1+t2),

解得:t2=1.0s,

故小物块在小车上相对滑动的总时间为t=t1+t2=2.0s.

答:当小车在12.0N水平推力作用下,从静止开始运动,经1.0后撤去水平力,小物块最终没有从小车上滑落,小物块在小车上相对滑动的总时间为2s.


【解析】(1)当加速度a1=1.0m/s2时,m与M保持相对静止,对m根据牛顿第二定律求解摩擦力;(2)当小车以a2=4.0m/s2的加速度向右匀加速运动时,m与M相对滑动,以M为研究对象,根据牛顿第二定律求解推力大小;(3)当F2=12.0N时,根据牛顿第二定律求解M加速运动和减速运动的加速度大小,求解1.0s时的速度,再根据运动学公式求解达到共同速度时的时间,即可求解小物块在小车上相对滑动的总时间.
【考点精析】解答此题的关键在于理解匀变速直线运动的速度、位移、时间的关系的相关知识,掌握速度公式:V=V0+at;位移公式:s=v0t+1/2at2;速度位移公式:vt2-v02=2as;以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网