题目内容
【题目】小球从高h处由静止释放,与水平地面碰撞后反弹的高度为3h/4;设小球与地面碰撞时没有动能损失,选水平地面为零势能面,小球在运动过程中受到的空气阻力大小不变,则( )
A.小球受到的空气阻力是其重力的3/4
B.小球第一次动能和重力势能相等的位置高为
C.小球每次反弹的高度变小,说明重力和空气阻力做的功都使小球的机械能减小
D.小球从释放到最后停止运动,所经过的总路程为7h
【答案】D
【解析】
试题分析:设小球质量为m,所受阻力大小为F,小球从h处释放时速度为零,与地面碰撞反弹到时,速度也为零,对整个过程,运用动能定理得:mg(h-)-F(h+)=0-0 ,解得:,故A错误.设小球下落到次动能和重力势能相等的位置时高度为H.根据动能定理得 (mg-F)(h-H)=Ek;据题有 mgh=Ek;联立解得,故B错误.小球每次反弹的高度变小,根据功能关系知,只有空气阻力做的功使小球的机械能减小.故C错误.对开始下落到停止运动的整个过程,由动能定理得:mgh-FS=0,得总路程为 S=7h,故D正确.故选D.
练习册系列答案
相关题目