题目内容
【题目】在如图所示的平面直角坐标系xOy中,有一个圆形区域的匀强磁场(图中未画出),磁场方向垂直于xOy平面,O点为该圆形区域边界上的一点.现有一质量为m、带电荷量为+q的带电粒子(不计重力)从O点以初速度v0沿x轴正方向进入磁场,已知粒子经过y轴上P点时速度方向与y轴正方向夹角为θ=30°,OP=L,求:
(1)磁感应强度的大小和方向;
(2)该圆形磁场区域的最小面积.
【答案】(1) ,垂直xOy平面向里 (2)
【解析】(1)由左手定则得磁场方向垂直xOy平面向里.粒子在磁场中做弧长为圆周的匀速圆周运动,如图所示,粒子在Q点飞出磁场.设其圆心为O′,半径为R.
由几何关系有 (L-R)sin 30°=R
得
由牛顿第二定律有
故
由以上各式得磁感应强度.
(2)设磁场区的最小面积为S.
由几何关系得,直径
得:
练习册系列答案
相关题目