题目内容
汽车的速度是20m/s,过凸桥最高点时,对桥的压力是车重的一半,则桥面的半径为______m;当车速为______m/s,车对桥面最高点的压力恰好为零.(g=10m/s2)
(1)汽车在凸桥最高点时,所受重力和桥面的支持力提供汽车圆周运动的向心力
由此可得:mg-F=m
由牛顿第三定律知F=
mg,代入v=20m/s,可得R=80m.
(2)当汽车对桥面压力为0时,即mg-F=m
中F=0,可得
v=
代入g=10m/s2,R=80m,可得v=
m/s=20
m/s=28.2m/s.
故答案为:80,28.2
由此可得:mg-F=m
v2 |
R |
由牛顿第三定律知F=
1 |
2 |
(2)当汽车对桥面压力为0时,即mg-F=m
v2 |
R |
v=
gR |
代入g=10m/s2,R=80m,可得v=
10×80 |
2 |
故答案为:80,28.2
练习册系列答案
相关题目