题目内容
【题目】如图所示,倾角为的粗糙平直导轨与半径为r的光滑圆环轨道相切,切点为b,整个轨道处在竖直平面内. 一质量为m的小滑块从导轨上离地面高为H=3r的d处无初速下滑进入圆环轨道,接着小滑块从最高点a水平飞出,恰好击中导轨上与圆心O等高的c点. 已知圆环最低点为e点,重力加速度为g,不计空气阻力. 求:
(1)小滑块在a点飞出的动能;
()小滑块在e点对圆环轨道压力的大小;
(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)
【答案】(1);(2)F′=6mg;(3)
【解析】
(1)小滑块从a点飞出后做平拋运动:
水平方向:
竖直方向:
解得:
小滑块在a点飞出的动能
(2)设小滑块在e点时速度为,由机械能守恒定律得:
在最低点由牛顿第二定律:
由牛顿第三定律得:F′=F
解得:F′=6mg
(3)bd之间长度为L,由几何关系得:
从d到最低点e过程中,由动能定理
解得
练习册系列答案
相关题目