ÌâÄ¿ÄÚÈÝ
17£® Çã½ÇΪ¦ÈµÄбÃæÉÏÖ»ÓÐAB¶Î´Ö²Ú£¬¶¯Ä¦²ÁÒòÊýΪ¦Ì=2tan¦È£¬ÆäÓಿ·Ö¹â»¬£®AB¶Î³¤Îª2L£¬ÓÐN¸öÏàͬµÄСľ¿é£¨µ¥¶À¿¼ÂÇÿ¸öСľ¿éʱ£¬ÊÓΪÖʵ㣩ÑØбÃæ¿¿ÔÚÒ»Æ𣬵«²»Õ³½Ó£¬×ܳ¤ÎªL£¬Ã¿Ò»¸öСľ¿éµÄÖÊÁ¿¾ùΪm£¬½«ËüÃÇÓɾ²Ö¹ÊÍ·Å£¬ÊÍ·Åʱ϶˾àAΪ2L£¬Bµ½Ð±Ãæµ×¶Ë×ã¹»³¤£®Ç󣺣¨1£©´ÓµÚ1¸öľ¿éµ½µÚN¸öľ¿éͨ¹ýAµãµÄ¹ý³ÌÖУ¬µÚ¼¸¸öľ¿éͨ¹ýAµãµÄËÙ¶È×î´ó£¬×î´óËÙ¶ÈΪ¶àÉÙ£®
£¨2£©Ä¾¿éÔÚбÃæÉÏ»¬¶¯µÄ¹ý³ÌÖУ¬µÚk-1¸öľ¿éºÍµÚk+1¸öľ¿é¶ÔµÚk¸öľ¿é×öµÄ×ܹ¦£®
£¨3£©µÚk¸öľ¿éͨ¹ýBµãµÄËٶȣ®£¨ÌâÖÐ1£¼k£¼N£©
·ÖÎö £¨1£©ÁîÓÐn¸öľ¿é¹ýAµãËÙ¶È×î´óvm£¬Ôò¦Ìnmgcos¦È=Nmgsin¦È£¬Çó³önÓëNµÄ¹Øϵ£¬¸ù¾Ý¶¯Äܶ¨Àí¼´¿ÉÇó½â×î´óËٶȣ»
£¨2£©È«²¿Ä¾¿é¸Õ¹ýAµãʱËÙ¶ÈΪv£¬¸ù¾Ý¶¯Äܶ¨Àí¼´¿ÉÇóµÃv£¬¶øľ¿éÔÚбÃæÉÏ»¬¶¯Ê±£¬Ö»ÓÐÔÚͨ¹ýAµãµÄ¹ý³ÌÖвſÉÄÜÓÐÏ໥×÷ÓÃÁ¦£¬ÉèËùÇó¹¦ÎªW£®¶Ô´Ó¿ªÊ¼µ½ËùÓÐľ¿é¸Õͨ¹ýAµãµÄ¹ý³Ì£¬ÔËÓö¯Äܶ¨Àí¼´¿ÉÇóµÃW£»
£¨3£©´ÓËùÓÐľ¿é¸Õ¹ýAµãµ½µÚk¸öľ¿é¸Õµ½Bµã£¬¶ÔµÚk¸öľ¿éÔËÓö¯Äܶ¨Àí¼´¿ÉÇó½â£®
½â´ð ½â£ºÄ¾¿é¹ýAµãµÄλÒÆΪxʱ£¬Ä¦²ÁÁ¦Îª£ºf=¦Ì$\frac{N}{L}$mgcos¦È£¬
Ħ²ÁÁ¦Õý±ÈÓÚλÒÆ£¬¿ÉÓÉƽ¾ùÁ¦ÇóĦ²ÁÁ¦×ö¹¦£®
£¨1£©ÁîÓÐn¸öľ¿é¹ýAµãËÙ¶È×î´óvm£¬ÔòÓУº¦Ìnmgcos¦È=Nmgsin¦È
½âµÃ£ºn=$\frac{N}{2}$£¬¼´Ò»°ëľ¿é¹ýAµãËÙ¶È×î´ó£¬Óɶ¯Äܶ¨ÀíµÃ£º
$\frac{1}{2}$Nmv2=Nmg•$\frac{5}{2}$Lsin¦È$\frac{1}{2}$•$\frac{1}{2}$¦ÌNmgcos¦È•$\frac{L}{2}$£¬
½âµÃ£ºvm=$\sqrt{4.5Lgsin¦È}$£»
£¨2£©È«²¿Ä¾¿é¸Õ¹ýAµãʱËÙ¶ÈΪv£¬ÔòÓУ»
Nmgsin¦È•L-$\frac{1}{2}$¦ÌNmggcos¦È•L=$\frac{1}{2}$Nmv2-0£¬
½âµÃ£ºv=$\sqrt{4Lgsin¦È}$£¬
¶øľ¿éÔÚбÃæÉÏ»¬¶¯Ê±£¬Ö»ÓÐÔÚͨ¹ýAµãµÄ¹ý³ÌÖвſÉÄÜÓÐÏ໥×÷ÓÃÁ¦£¬
ÉèËùÇó¹¦ÎªW£®¶Ô´Ó¿ªÊ¼µ½ËùÓÐľ¿é¸Õͨ¹ýAµãµÄ¹ý³Ì£¬¶ÔµÚk¸öľ¿éÓУº
mg•3Lsin¦È-¦Ìmgcos¦È£¨N-K£©$\frac{L}{N}$+W=mv2-0£¬
½âµÃ£ºW=$\frac{N-2K}{N}$mgLsin¦È£»
£¨3£©´ÓËùÓÐľ¿é¸Õ¹ýAµãµ½µÚk¸öľ¿é¸Õµ½Bµã£¬¶ÔµÚk¸öľ¿é£¬
Óɶ¯Äܶ¨ÀíµÃ£º$\frac{1}{2}$mvB2-$\frac{1}{2}$mv2=£¨mgsin¦È-¦Ìmgcos¦È£©£¨k$\frac{L}{N}$+L£©£¬
½âµÃ£ºvB=$\sqrt{\frac{2£¨N-K£©Lsin¦È}{N}}$£»
´ð£º£¨1£©´ÓµÚ1¸öľ¿éµ½µÚN¸öľ¿éͨ¹ýAµãµÄ¹ý³ÌÖУ¬µÚ$\frac{N}{2}$¸öľ¿éͨ¹ýAµãµÄËÙ¶È×î´ó£¬×î´óËÙ¶ÈΪ£º$\sqrt{4.5Lgsin¦È}$£®
£¨2£©Ä¾¿éÔÚбÃæÉÏ»¬¶¯µÄ¹ý³ÌÖУ¬µÚk-1¸öľ¿éºÍµÚk+1¸öľ¿é¶ÔµÚk¸öľ¿é×öµÄ×ܹ¦Îª$\frac{N-2K}{N}$mgLsin¦È£®
£¨3£©µÚk¸öľ¿éͨ¹ýBµãµÄËÙ¶ÈΪ$\sqrt{\frac{2£¨N-K£©Lsin¦È}{N}}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˶¯Äܶ¨ÀíµÄÖ±½ÓÓ¦Óã¬ÒªÇóͬѧÃÇÄÜÑ¡È¡ºÏÊʵĹý³ÌÔËÓö¯Äܶ¨ÀíÇó½â£¬ÄѶÈÊÊÖУ®
£¨1£©ÊµÑéÖ÷Òª²½ÖèÈçÏ£º
¢Ù½«ÀÁ¦´«¸ÐÆ÷¹Ì¶¨ÔÚС³µÉÏ£»
¢ÚƽºâĦ²ÁÁ¦£¬ÈÃС³µÔÚûÓÐÀÁ¦×÷ÓÃʱÄÜ×öÔÈËÙÖ±ÏßÔ˶¯£»
¢Û°ÑϸÏßµÄÒ»¶Ë¹Ì¶¨ÔÚÀÁ¦´«¸ÐÆ÷ÉÏ£¬ÁíÒ»¶Ëͨ¹ý¶¨»¬ÂÖÓë¹³ÂëÏàÁ¬£»
¢Ü½ÓͨµçÔ´ºó×ÔCµãÊÍ·ÅС³µ£¬Ð¡³µÔÚϸÏßÀ¶¯ÏÂÔ˶¯£¬¼Ç¼ϸÏßÀÁ¦FµÄ´óС¼°Ð¡³µ·Ö±ðµ½´ïA¡¢BʱµÄËÙÂÊvA¡¢vB
¢Ý¸Ä±äËù¹Ò¹³ÂëµÄÊýÁ¿£¬Öظ´¢ÜµÄ²Ù×÷£®
£¨2£©±íÖмǼÁËʵÑé²âµÃµÄ¼¸×éÊý¾Ý£¬vB2-vA2ÊÇÁ½¸öËٶȴ«¸ÐÆ÷¼Ç¼ËÙÂʵÄƽ·½²î£¬Ôò¼ÓËٶȵıí´ïʽa=$\frac{{{v}_{B}^{2}-v}_{A}^{2}}{2L}$£¨ÓÃÌâÖÐÒÑÖªµÄ·ûºÅ±íʾ£©£¬Ç뽫±íÖеÚ3´ÎµÄʵÑéÊý¾ÝÌîдÍêÕû£¨½á¹û±£ÁôÈýλÓÐЧÊý×Ö£©£»
´ÎÊý | F£¨N£© | vB2-vA2£¨m2/s2£© | a£¨m/s2£© |
1 | 0.60 | 0.77 | 0.80 |
2 | 1.04 | 1.61 | 1.68 |
3 | 1.42 | 2.34 | |
4 | 2.62 | 4.65 | 4.84 |
5 | 3.00 | 5.49 | 5.72 |
A£® | $\frac{T}{2£¨1-\sqrt{\frac{k}{{n}^{3}}}£©}$ | B£® | $\frac{T}{2£¨\sqrt{\frac{{n}^{3}}{k}}-1£©}$ | C£® | $\frac{T}{2£¨\sqrt{\frac{k}{{n}^{3}}}-1£©}$ | D£® | $\frac{T}{2£¨1-\sqrt{\frac{{n}^{3}}{k}}£©}$ |
A£® | ¼õÉÙÿ´ÎÔËËÍÍߵĿéÊý | |
B£® | ¼õÉÙÁ½¸ËÖ®¼äµÄ¾àÀë | |
C£® | ÓñÈÔÀ´½Ï³¤µÄÁ½¸ùÔ²ÖùÐÎľ¸ËÌæ´úÔÀ´µÄľ¸Ë | |
D£® | ÓñÈÔÀ´½Ï¶ÌµÄÁ½¸ùÔ²ÖùÐÎľ¸ËÌæ´úÔÀ´µÄľ¸Ë |
A£® | ÕâÁ½¸öµãµçºÉÒ»¶¨ÊǵÈÁ¿ÒìÖÖµçºÉ | B£® | CµãµÄµçÊÆÒ»¶¨Ð¡ÓÚDµãµÄµçÊÆ | ||
C£® | CµãµÄµçÊÆÒ»¶¨´óÓÚDµãµÄµçÊÆ | D£® | CµãµÄµç³¡Ç¿¶È±ÈDµãµÄµç³¡Ç¿¶ÈС |