ÌâÄ¿ÄÚÈÝ
10£®ÖÊÁ¿m=10kgµÄÎïÌåÔÚ·½ÏòƽÐÐÓÚбÃæ¡¢´óСΪF=186NµÄÀÁ¦×÷ÓÃÏ£¬´Ó¹Ì¶¨´Ö²ÚбÃæµÄµ×¶ËÓɾ²Ö¹¿ªÊ¼ÑØбÃæÏòÉÏÔ˶¯£¬ÀÁ¦F×÷ÓÃt1=2sºó³·È¥£®ÒÑ֪бÃæÓëˮƽÃæµÄ¼Ð½Ç¦È=37¡ã£¬ÈçͼËùʾ£®Ð±Ãæ×ã¹»³¤£¬ÎïÌåÓëбÃæ¼äµÄ¶¯Ä¦²ÁÒòÊý¦Ì=0.8£¬È¡ÖØÁ¦¼ÓËÙ¶Èg=10m/s2£®Ç󣺣¨1£©ÔÚÀÁ¦F×÷ÓÃÏ£¬ÎïÌåµÄ¼ÓËٶȴóСa1
£¨2£©³·È¥ÀÁ¦Fºó£¬ÎïÌåÑØбÃæÏòÉÏ»¬ÐеÄʱ¼ät2
£¨3£©ÊÔÅжÏÎïÌåÄÜ·ñ»Øµ½Ð±Ãæµ×¶Ë£¬Èô²»ÄÜÇë˵Ã÷ÀíÓÉ£¬ÈôÄÜÇë¼ÆËã³öÎïÌå´Ó³ö·¢ÖÁ»Øµ½Ð±Ãæµ×¶ËµÄʱ¼ä£¨sin37¡ã=0.6£¬cos37¡ã=0.8£©
·ÖÎö £¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÉÏÉýʱÎïÌåµÄ¼ÓËٶȣ®
£¨2£©Í¨¹ýÔ˶¯Ñ§¹«Ê½Çó³ö³·È¥ÀÁ¦Ê±µÄËٶȣ¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö³·È¥ÀÁ¦ºóµÄ¼ÓËٶȣ¬´Ó¶ø¸ù¾ÝËÙ¶Èʱ¼ä¹«Ê½Çó³öÑØбÃæÉÏ»¬µÄʱ¼ä£®
£¨3£©¸ù¾ÝÖØÁ¦µÄÏ»¬·ÖÁ¦Óë×î´ó¾²Ä¦²ÁÁ¦µÄ¹Øϵ£¬·ÖÎöÎïÌåÄÜ·ñÏ»¬£¬ÈôÄÜÏ»¬£¬ÔÙÓÉÅ£¶ÙµÚ¶þ¶¨ÂɺÍλÒÆʱ¼ä¹«Ê½Çó½âʱ¼ä£®
½â´ð ½â£º£¨1£©ÉèÔÚÀÁ¦F×÷ÓÃÏÂÎïÌåµÄ¼ÓËٶȴóСΪa1£®¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ ÓÐ
F-£¨mgsin¦È+¦Ìmgcos¦È£©=ma1
½âµÃ a1=$\frac{F}{m}$-g£¨sin¦È+¦Ìcos¦È£©=$\frac{186}{10}$-10¡Á£¨0.6+0.8¡Á0.8£©=6.2m/s2£»
£¨2£©Éè2sÄ©µÄËÙ¶ÈΪv1£¬ÓÉÔ˶¯¹«Ê½ ÓÐv1=a1t1=6.2¡Á2=12.4m/s
³·È¥Fºó£¬ÎïÌåÑØбÃæÏòÉÏ×÷ÔȼõËÙÖ±ÏßÔ˶¯£¬Éè¼ÓËٶȴóСΪa2£¬Ô˶¯µ½ËÙ¶ÈΪÁãËùÓõÄʱ¼äΪt2£®¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢Ô˶¯Ñ§¹«Ê½ÓÐ
mgsin¦È+¦Ìmgcos¦È=ma2
½âµÃ£ºa2=12.4m/s2
ÓÉ0=v1+£¨-a2£©t2
½âµÃ t2=$\frac{{v}_{1}}{{a}_{2}}$=$\frac{12.4}{12.4}$s=1s
£¨3£©ÔÚ×î¸ßµãʱ£¬ÓÉÓÚmgsin37¡ã£¼¦Ìmgcos37¡ã£¬ËùÒÔÎïÌå²»ÄÜÏ»¬£¬¾²Ö¹ÔÚбÃæÉÏ£®
´ð£º
£¨1£©ÔÚÀÁ¦F×÷ÓÃÏ£¬ÎïÌåµÄ¼ÓËٶȴóСa1ÊÇ6.2m/s2£®
£¨2£©³·È¥ÀÁ¦Fºó£¬ÎïÌåÑØбÃæÏòÉÏ»¬ÐеÄʱ¼ät2ÊÇ1s£®
£¨3£©¶ÏÎïÌå²»Äܻص½Ð±Ãæµ×¶Ë£®
µãÆÀ ±¾Ìâ×ۺϿ¼²éÁËÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½£¬ÖªµÀ¼ÓËÙ¶ÈÊÇÁªÏµÁ¦Ñ§ºÍÔ˶¯Ñ§µÄÇÅÁº£¬ÊǶ¯Á¦Ñ§ÎÊÌâÖбØÇóµÄÁ¿£®
A£® | ×÷ÓÃÁ¦Óë·´×÷ÓÃÁ¦Í¬Ê±²úÉú£¬Í¬Ê±Ïûʧ | |
B£® | ×÷ÓÃÁ¦Óë·´×÷ÓÃÁ¦¿ÉÒÔÊDz»Í¬ÐÔÖʵÄÁ¦ | |
C£® | ×÷ÓÃÁ¦ºÍËüµÄ·´×÷ÓÃÁ¦µÄºÏÁ¦ÎªÁã | |
D£® | Ö»Óе±Á½ÎïÌå´¦ÓÚ¾²Ö¹Ê±£¬ËüÃÇÖ®¼äµÄ×÷ÓÃÁ¦Óë·´×÷ÓÃÁ¦´óС²ÅÏàµÈ |
A£® | ƽÅ×Ô˶¯¡¢Ëٶȡ¢µãµçºÉµÈ¶¼ÊÇÀíÏ뻯ģÐÍ | |
B£® | ÎïÀíѧÖÐËùÓÐÎïÀíÁ¿¶¼ÊDzÉÓñÈÖµ·¨¶¨ÒåµÄ | |
C£® | ·¨ÀµÚ×îÏÈÌá³öµçºÉÖÜΧ´æÔڵ糡µÄ¹Ûµã | |
D£® | µçºÉµÄÖÜΧ¼ÈÓе糡ҲÓдų¡£¬·´Ó³Á˵çºÍ´ÅÊÇÃܲ»¿É·ÖµÄ |
A£® | F1Ò»Ö±¼õС£¬F2ÏȼõСºóÔö´ó | B£® | F1ÏȼõСºóÔö´ó£¬F2ÏÈÔö´óºó¼õС | ||
C£® | F1ºÍF2¶¼Ò»Ö±¼õС | D£® | F1ºÍF2¶¼Ò»Ö±Ôö´ó |
A£® | $\frac{{\sqrt{2}}}{2}T$ | B£® | $\frac{3}{4}T$ | C£® | $\frac{{\sqrt{3}}}{2}T$ | D£® | $\frac{1}{2}T$ |
A£® | $\sqrt{\frac{2}{5}}$s | B£® | ´óÓÚ$\sqrt{\frac{2}{5}}$s | C£® | СÓÚ$\sqrt{\frac{2}{5}}$s | D£® | $\frac{\sqrt{2}}{5}$s |
A£® | ±£³Ö¿ª¹Ø±ÕºÏ£¬Ê¹Á½¼«°å¿¿½üһЩ | |
B£® | ±£³Ö¿ª¹Ø±ÕºÏ£¬Ê¹»¬¶¯±ä×èÆ÷»¬Æ¬ÏòÓÒÒƶ¯ | |
C£® | ±£³Ö¿ª¹Ø±ÕºÏ£¬Ê¹Á½¼«°åÔ¶ÀëһЩ | |
D£® | ¶Ï¿ª¿ª¹Ø£¬Ê¹Á½¼«°å¿¿½üһЩ |